-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfixation.py
153 lines (126 loc) · 4.98 KB
/
fixation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from tqdm import tqdm
from sklearn.cluster import DBSCAN
from statsmodels.tsa.stattools import grangercausalitytests, adfuller, kpss
from mongo_connection import Mongo_connection
import roi_config
import eye_metrics_utils
import data_utils
import utils
label = roi_config.label
roi_center = roi_config.roi_center
pdict = utils.get_pdict()
def calibration(df_fix, roi_center):
diffx = []
diffy = []
idxmin= []
for i in range(len(df_fix)):
x = df_fix.iloc[i]
m = np.argmin(x[-6:])
idxmin.append(m)
mx = list(roi_center.values())[m][0]
my = list(roi_center.values())[m][1]
if m == 0:
w = 0.3
else:
w = 1
diffx.append(w * (x.x - mx))
diffy.append(w * (x.y - my))
offsetx = np.mean(diffx)
offsety = np.mean(diffy)
print("offsetx", offsetx)
print("offsety", offsety)
return offsetx, offsety
def merge_consecutive_fixations_in_same_roi(df_fix):
df_fix['value_grp'] = (df_fix.roi != df_fix.roi.shift()).cumsum()
return pd.DataFrame({ 'start' : df_fix.groupby('value_grp').start.first(),
'end' : df_fix.groupby('value_grp').end.last(),
'duration' : df_fix.groupby('value_grp').duration.sum(),
'x' : df_fix.groupby('value_grp').x.mean(),
'y': df_fix.groupby('value_grp').y.mean(),
'roi': df_fix.groupby('value_grp').roi.first()
}).reset_index(drop=True)
def run_one_data(filename):
print(filename)
df_data = pd.read_csv(filename)
df_data = data_utils.reset_time(df_data)
null_percent = data_utils.check_percentage_null(df_data)
if null_percent > 0.2:
print("null percent: {}, exclude ID {}".format(null_percent, filename[14:17]))
return 0
df_fixation = eye_metrics_utils.detect_fixations(df_data)
df_blink = eye_metrics_utils.detect_blinks(df_data)
df_saccade = eye_metrics_utils.detect_saccades(df_data)
X = df_fixation[["x", "y"]].values
clustering = DBSCAN(eps=20, min_samples=5, metric = utils.distance).fit(X)
df_fixation["roi"] = clustering.labels_
df_fixation = merge_consecutive_fixations_in_same_roi(df_fixation)
for k,v in roi_center.items():
df_fixation["{}".format(k)] = df_fixation.apply(lambda x: utils.distance(x[["x","y"]], v), axis=1)
X = df_fixation[["x", "y"]].values
clustering = DBSCAN(eps=20, min_samples=5, metric = utils.distance).fit(X)
color = clustering.labels_
df_fixation["roi"] = clustering.labels_
# img = plt.imread("flight.jpg")
# h,w,c = img.shape
# fig=plt.figure(figsize=(15,8))
# ax=fig.add_axes([0,0,1,1])
# # ax.imshow(img, extent=[0, 1600, 0, 900])
# ax.imshow(img)
# # ax.scatter(cluster_center[0], cluster_center[1], s=30, marker = "x", c = "red")
# ax.scatter(X.T[0],X.T[1], c=color, cmap="jet", alpha = 0.5)
# ax.set_xlabel('x')
# ax.set_ylabel('y')
# ax.set_title('center')
offsetx, offsety = calibration(df_fixation, roi_center)
df_fixation["x"] = df_fixation.x - offsetx
df_fixation["y"] = df_fixation.y - offsety
return df_fixation
def dist_func(point, v1, v2, type="c"): #between points and rectange/cirle
"""
point: x, y
v1,v2: topleft,bottomright if type = "r"
v1,v2: center (x,y), diameter if type = "c"
"""
d = 0
if type == "r":
dx = max(v1[0] - point[0], 0, point[0] - v2[0])
dy = max(v1[1] - point[1], 0, point[1] - v2[1])
d = np.sqrt(dx*dx + dy*dy)
elif type == "c":
d = np.sqrt((point[0]-v1[0])**2 + (point[1]-v1[1])**2) - v2
return d
def get_fixation_sequences(df_fixation, label = label, threshold = 20):
roi = []
count = 0
pdict = utils.get_pdict()
for i in range(len(df_fixation)):
x = df_fixation.iloc[i]
point = (x.x, x.y)
d = [dist_func(point, v[0], v[1], v[2]) for k,v in label.items()]
order = np.argsort(d)
if 0.0 not in d: # point is outside ROI
if d[order[0]] > threshold:
key = "unknown"
else:
key = list(pdict.keys())[order[0]]
else:# point falls inside a ROI
count += 1
key = list(pdict.keys())[order[0]]
# print(d, order, key)
roi.append(key)
return roi
# import glob
# csv_files = glob.glob("data/*.csv")
# csv_files_one = [v for v in csv_files if "One Gaze-Vergence" in v]
# csv_files_two = [v for v in csv_files if "Two Gaze-Vergence" in v]
# csv_files_three = [v for v in csv_files if "Three Go-Around Gaze-Vergence" in v]
# filename = csv_files_two[10]
# df_fixation = run_one_data(filename)
# roi = get_fixation_sequences(df_fixation)
# df_fixation["roi"] = roi
# df_fixation = merge_consecutive_fixations_in_same_roi(df_fixation)
# transitions = df_fixation["roi"]
# print(df_fixation.head())