-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
271 lines (228 loc) · 12.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from __future__ import print_function
import os
import sys
import argparse
import time
import random
import numpy as np
import torch
import torch.nn as nn
from torchvision import transforms
import torch.optim as optim
from model import SiameseNetwork, ContrastiveLoss
from dataset import CubDataset, OnlineProductDataset, CarDataset
from loss import calculate_distance_and_similariy_label, contrastive_loss, focal_contrastive_loss, triplet_loss, focal_triplet_loss
from loss import angular_loss
from torch.utils.data import DataLoader
from evaluation import get_feature_and_label, evaluation
from utils import get_parameter_group, configure_optimizer
import datetime
parser = argparse.ArgumentParser()
parser.add_argument('--root_dir', type=str, \
default='/data/Guoxian_Dai/CUB_200_2011/CUB_200_2011/images')
parser.add_argument('--image_txt', type=str, \
default='/data/Guoxian_Dai/CUB_200_2011/CUB_200_2011/images.txt')
parser.add_argument('--train_test_split_txt', type=str, \
default='/data/Guoxian_Dai/CUB_200_2011/CUB_200_2011/train_test_split.txt')
parser.add_argument('--label_txt', type=str, \
default='/data/Guoxian_Dai/CUB_200_2011/CUB_200_2011/image_class_labels.txt')
parser.add_argument('--pretrained_model_path', default='./weights/inception_v3.ckpt', type=str)
parser.add_argument('--pretrained', default=False, type=bool)
parser.add_argument('--aux_logits', default=False, type=bool)
parser.add_argument('--pair_type', default='vector', type=str)
parser.add_argument('--mode', default='train', type=str)
parser.add_argument('--dataset_name', default='cub200', type=str)
parser.add_argument('--with_regularizer', help='whether to use regularizer for parameters', action='store_true')
parser.add_argument('--optimizer', default='rmsprop', type=str)
parser.add_argument('--loss_type', default='contrastive_loss', type=str)
parser.add_argument('--learning_rate_decay_type', default='fixed', type=str)
parser.add_argument('--train_batch_size', default=64, type=int)
parser.add_argument('--test_batch_size', default=32, type=int)
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--num_epochs', default=10000, type=int)
parser.add_argument('--learning_rate', default=1e-2, type=float)
parser.add_argument('--momentum', default=1e-2, type=float)
parser.add_argument('--learning_rate2', default=1e-4, type=float)
parser.add_argument('--dropout_keep_prob', default=0.5, type=float)
parser.add_argument('--weight_decay', default=5e-4, type=float)
parser.add_argument('--restore_ckpt', default=0, type=int) # 1 for True
parser.add_argument('--evaluation', default=0, type=int) # 1 for True
parser.add_argument('--weight_file', default='./models/my-model', type=str)
parser.add_argument('--ckpt_dir', default='./checkpoint', type=str)
parser.add_argument('--class_num', default=5, type=int)
parser.add_argument('--targetNum', default=1000, type=int)
parser.add_argument('--margin', default=1.0, type=float)
parser.add_argument('--gamma', default=0.98, type=float, help="weight decay factor")
parser.add_argument('--focal_decay_factor', default=1.0, type=float)
parser.add_argument('--display_step', default=20, type=int, help='step interval for displaying loss')
parser.add_argument('--eval_step', default=5, type=int, help='step interval for evaluate loss')
# image information
parser.add_argument('--width', default=512, type=int)
parser.add_argument('--height', default=512, type=int)
parser.add_argument('--embedding_size', default=128, type=int)
parser.add_argument('--num_epochs_per_decay', default=2, type=int)
parser.add_argument('--ngpu', default=2, type=int)
parser.add_argument('--manual_seed', default=22222, type=int)
parser.add_argument('--mean_value', default=22222, type=float)
parser.add_argument('--std_value', default=22222, type=float)
args = parser.parse_args()
# Inception_v3 input transformation.
"""
Before transform
x ~ [0, 1]
After transform:
(x - 0.485) / 0.229
Expected:
x ~ [-1, 1]
To do
"""
def train(args):
# basic arguments.
ngpu = args.ngpu
margin = args.margin
manual_seed = args.manual_seed
torch.manual_seed(manual_seed)
mean_value = args.mean_value
std_value = args.std_value
print("margin = {:5.2f}".format(margin))
print("manual_seed = {:5.2f}".format(manual_seed))
print("mean_value = {:5.2f}".format(mean_value))
print("std_value = {:5.2f}".format(std_value))
num_epochs = args.num_epochs
train_batch_size = args.train_batch_size
test_batch_size = args.test_batch_size
gamma = args.gamma # for learning rate decay
learning_rate = args.learning_rate
learning_rate2 = args.learning_rate2
loss_type = args.loss_type
dataset_name = args.dataset_name
pair_type = args.pair_type
mode = args.mode
weight_file = args.weight_file
print("pair_type = {}".format(pair_type))
print("loss_type = {}".format(loss_type))
print("mode = {}".format(mode))
print("weight_file = {}".format(weight_file))
root_dir = args.root_dir
image_txt = args.image_txt
train_test_split_txt = args.train_test_split_txt
label_txt = args.label_txt
ckpt_dir = args.ckpt_dir
eval_step = args.eval_step
display_step = args.display_step
embedding_size = args.embedding_size
pretrained = args.pretrained
aux_logits = args.aux_logits
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
kargs = {'ngpu': ngpu, 'pretrained': pretrained, 'aux_logits':aux_logits, 'embedding_size': embedding_size}
# create directory
model_dir = os.path.join(ckpt_dir, dataset_name, loss_type, str(int(embedding_size)))
print("model_dir = {}".format(model_dir))
if not os.path.isdir(model_dir):
os.makedirs(model_dir)
# network and loss
siamese_network = SiameseNetwork(**kargs)
first_group, second_group = siamese_network.separate_parameter_group()
param_lr_dict = [
{'params': first_group, 'lr': learning_rate2},
{'params': second_group, 'lr': learning_rate}
]
gpu_number = torch.cuda.device_count()
if device.type == 'cuda' and gpu_number > 1:
siamese_network = nn.DataParallel(siamese_network, list(range(torch.cuda.device_count())))
siamese_network.to(device)
# contrastive_loss = ContrastiveLoss(margin=margin)
# params = siamese_network.parameters()
print("args.optimizer = {:10s}".format(args.optimizer))
print("learning_rate = {:5.5f}".format(learning_rate))
print("learning_rate2 = {:5.5f}".format(learning_rate2))
optimizer = configure_optimizer(param_lr_dict, optimizer=args.optimizer)
# using different lr
# scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=gamma, last_epoch=-1)
transform = transforms.Compose([transforms.Resize((299, 299)),
transforms.CenterCrop(299),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]
)
if dataset_name == 'cub200':
"""
print("dataset_name = {:10s}".format(dataset_name))
print(root_dir)
print(image_txt)
print(train_test_split_txt)
print(label_txt)
"""
dataset_train = CubDataset(root_dir, image_txt, train_test_split_txt, label_txt, transform=transform, is_train=True, offset=1)
dataset_eval = CubDataset(root_dir, image_txt, train_test_split_txt, label_txt, transform=transform, is_train=False, offset=1)
elif dataset_name == 'online_product':
"""
print("dataset_name = {:10s}".format(dataset_name))
"""
dataset_train = OnlineProductDataset(root_dir, train_txt=image_txt, test_txt=train_test_split_txt, transform=transform, is_train=True, offset=1)
dataset_eval = OnlineProductDataset(root_dir, train_txt=image_txt, test_txt=train_test_split_txt, transform=transform, is_train=False, offset=1)
elif dataset_name == "car196":
print("dataset_name = {}".format(dataset_name))
dataset_train = CarDataset(root_dir, image_info_mat=image_txt, transform=transform, is_train=True, offset=1)
dataset_eval = CarDataset(root_dir, image_info_mat=image_txt, transform=transform, is_train=False, offset=1)
dataloader = DataLoader(dataset=dataset_train, batch_size=train_batch_size, shuffle=False, num_workers=4)
dataloader_eval = DataLoader(dataset=dataset_eval, batch_size=test_batch_size, shuffle=False, num_workers=4)
log_for_loss = []
if mode == 'evaluation':
print("Do one time evluation and exit")
print("Load pretrained model")
siamese_network.module.load_state_dict(torch.load(weight_file))
print("Finish loading")
print("Calculting features")
feature_set, label_set, path_set = get_feature_and_label(siamese_network, dataloader_eval, device)
rec_pre = evaluation(feature_set, label_set)
# np.save("car196_rec_pre_ftl.npy", rec_pre)
# for visualization
sum_dict = {'feature': feature_set, 'label': label_set, 'path': path_set}
np.save('car196_fea_label_path.npy', sum_dict)
sys.exit()
print("Finish eval")
for epoch in range(num_epochs):
if epoch == 0:
feature_set, label_set, _ = get_feature_and_label(siamese_network, dataloader_eval, device)
# distance_type: Euclidean or cosine
rec_pre = evaluation(feature_set, label_set, distance_type='cosine')
siamese_network.train()
for i, data in enumerate(dataloader, 0):
# img_1, img_2, sim_label = data['img_1'].to(device), data['img_2'].to(device), data['sim_label'].type(torch.FloatTensor).to(device)
img_1, img_2, label_1, label_2 = data['img_1'].to(device), data['img_2'].to(device), data['label_1'].to(device), data['label_2'].to(device)
optimizer.zero_grad()
output_1, output_2 = siamese_network(img_1, img_2)
pair_dist, pair_sim_label = calculate_distance_and_similariy_label(output_1, output_2, label_1, label_2, sqrt=True, pair_type=pair_type)
if loss_type == "contrastive_loss":
loss, positive_loss, negative_loss = contrastive_loss(pair_dist, pair_sim_label, margin)
elif loss_type == "focal_contrastive_loss":
loss, positive_loss, negative_loss = focal_contrastive_loss(pair_dist, pair_sim_label, margin, mean_value, std_value)
elif loss_type == "triplet_loss":
loss, positive_loss, negative_loss = triplet_loss(pair_dist, pair_sim_label, margin)
elif loss_type == "focal_triplet_loss":
loss, positive_loss, negative_loss = focal_triplet_loss(pair_dist, pair_sim_label, margin, mean_value, std_value)
elif loss_type == "angular_loss":
center_output = (output_1 + output_2)/2.
pair_dist_2, _ = calculate_distance_and_similariy_label(center_output, output_2, label_1, label_2, sqrt=True, pair_type=pair_type)
# angle margin is 45^o
loss, positive_loss, negative_loss = angular_loss(pair_dist, pair_dist_2, pair_sim_label, 45)
else:
print("Unknown loss function")
sys.exit()
# try my own customized loss function
# loss = contrastive_loss(output_1, output_2, pair_sim_label)
loss.backward()
optimizer.step()
log_for_loss.append(loss.detach().item())
if i % display_step == 0 and i > 0:
print("{}, Epoch [{:3d}/{:3d}], Iter [{:3d}/{:3d}], Loss: {:6.5f}, Positive loss: {:6.5f}, Negative loss: {:6.5f}".format(
datetime.datetime.now(), epoch, num_epochs, i, len(dataloader), loss.item(), positive_loss.item(), negative_loss.item()))
if epoch % eval_step == 0:
print("Start evalution")
# np.save(loss_type +'.npy', log_for_loss)
feature_set, label_set, _ = get_feature_and_label(siamese_network, dataloader_eval, device)
# distance_type: Euclidean or cosine
rec_pre = evaluation(feature_set, label_set, distance_type='cosine')
torch.save(siamese_network.module.state_dict(), os.path.join(model_dir, 'model_' + str(epoch) +'_.pth'))
if __name__ == '__main__':
train(args)