-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
430 lines (360 loc) · 17.3 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from __future__ import print_function
import os
import torch
from torchvision import transforms, utils
from torch.utils.data import Dataset, DataLoader
import random
from PIL import Image
import scipy.io as io
class CarDataset(Dataset):
"""
This is a customized dataset for CUB 200.
"""
def __init__(self, root_dir, image_info_mat, transform=None, is_train=True, offset=1):
self.root_dir = root_dir
self.image_info_mat = image_info_mat
self.transform = transform
self.is_train = is_train
self.offset = offset
self.train_img_list, self.train_label_list, self.test_img_list, \
self.test_label_list = self.generate_split_list()
# shuffle training list
self.shuffle_list()
print("len(self.train_img_list) = {:5d}".format(len(self.train_img_list)))
print("len(self.train_label_list) = {:5d}".format(len(self.train_label_list)))
print("len(self.test_img_list) = {:5d}".format(len(self.test_img_list)))
print("len(self.test_label_list) = {:5d}".format(len(self.test_label_list)))
"""
merge_list = list(zip(self.train_img_list, self.train_label_list))
random.shuffle(merge_list)
self.train_img_list_dummy, self.train_label_list_dummy = tuple(zip(*merge_list))
"""
def generate_split_list(self):
# load mat data
label_set = io.loadmat(self.image_info_mat)
label_set = label_set['annotations'][0]
# get total number of data
total_num = label_set.size
train_img_list = []
train_label_list = []
test_img_list = []
test_label_list = []
for i in range(total_num):
path = os.path.join(self.root_dir, label_set[i][0][0])
label = label_set[i][5][0][0]
if i < 8054:
train_img_list.append(path)
train_label_list.append(label-1)
else:
test_img_list.append(path)
test_label_list.append(label-99)
return train_img_list, train_label_list, test_img_list, test_label_list
def shuffle_list(self):
"""Shuflle the list"""
merge_list = list(zip(self.train_img_list, self.train_label_list))
random.shuffle(merge_list)
self.train_img_list_dummy, self.train_label_list_dummy = tuple(zip(*merge_list))
random.shuffle(merge_list)
self.train_img_list, self.train_label_list = tuple(zip(*merge_list))
def __len__(self):
if self.is_train:
return len(self.train_img_list)
else:
return len(self.test_img_list)
def __getitem__(self, idx):
if self.is_train:
# Use PIL.Image to read image, and convert it to RGB
img_1 = Image.open(self.train_img_list[idx]).convert('RGB')
label_1 = self.train_label_list[idx]
img_2 = Image.open(self.train_img_list_dummy[idx]).convert('RGB')
label_2 = self.train_label_list_dummy[idx]
if self.transform:
img_1, img_2 = self.transform(img_1), self.transform(img_2)
sample = {'img_1': img_1, 'img_2': img_2, 'label_1': label_1, 'label_2': label_2}
# shulffe list for next round
if idx == self.__len__()-1:
self.shuffle_list()
else:
img = Image.open(self.test_img_list[idx]).convert('RGB')
label = self.test_label_list[idx]
if self.transform:
img = self.transform(img)
# sample = {'img': img, 'label': label}
sample = {'img': img, 'label': label, 'path': self.test_img_list[idx]}
return sample
class CubDataset(Dataset):
"""
This is a customized dataset for CUB 200.
"""
def __init__(self, root_dir, image_txt, train_test_split_txt, label_txt, transform=None, is_train=True, offset=1):
self.root_dir = root_dir
self.image_txt = image_txt
self.train_test_split_txt = train_test_split_txt
self.label_txt = label_txt
self.transform = transform
self.is_train = is_train
self.offset = offset
self.train_img_list, self.train_label_list, self.test_img_list, \
self.test_label_list = generate_half_split_list(self.root_dir, self.image_txt, \
self.train_test_split_txt, \
self.label_txt, self.offset
)
# shuffle training list
self.shuffle_list()
print("len(self.train_img_list) = {:5d}".format(len(self.train_img_list)))
print("len(self.train_label_list) = {:5d}".format(len(self.train_label_list)))
print("len(self.test_img_list) = {:5d}".format(len(self.test_img_list)))
print("len(self.test_label_list) = {:5d}".format(len(self.test_label_list)))
"""
merge_list = list(zip(self.train_img_list, self.train_label_list))
random.shuffle(merge_list)
self.train_img_list_dummy, self.train_label_list_dummy = tuple(zip(*merge_list))
"""
def shuffle_list(self):
"""Shuflle the list"""
merge_list = list(zip(self.train_img_list, self.train_label_list))
random.shuffle(merge_list)
self.train_img_list_dummy, self.train_label_list_dummy = tuple(zip(*merge_list))
random.shuffle(merge_list)
self.train_img_list, self.train_label_list = tuple(zip(*merge_list))
def __len__(self):
if self.is_train:
return len(self.train_img_list)
else:
return len(self.test_img_list)
def __getitem__(self, idx):
if self.is_train:
# Use PIL.Image to read image, and convert it to RGB
img_1 = Image.open(self.train_img_list[idx]).convert('RGB')
label_1 = self.train_label_list[idx]
img_2 = Image.open(self.train_img_list_dummy[idx]).convert('RGB')
label_2 = self.train_label_list_dummy[idx]
if self.transform:
img_1, img_2 = self.transform(img_1), self.transform(img_2)
sample = {'img_1': img_1, 'img_2': img_2, 'label_1': label_1, 'label_2': label_2}
# shulffe list for next round
if idx == self.__len__()-1:
self.shuffle_list()
else:
img = Image.open(self.test_img_list[idx]).convert('RGB')
label = self.test_label_list[idx]
if self.transform:
img = self.transform(img)
sample = {'img': img, 'label': label, 'path': self.test_img_list[idx]}
return sample
def generate_half_split_list(root_dir, image_txt, train_test_split_txt, label_txt, offset=1):
"""
Args:
root_dir: the root directory for image data.
image_txt: a txt file listing all the image paths.
train_test_split_txt: a txt file listing the image set (training, or testing),
denoting whether the image is for training or testing.
label_txt: a txt file list all the image label.
offset: the started value of label.
Returns:
train_img_list: [train_img_path1, train_img_path2, ...]
train_label_list: [train_label1, train_label2, ....]
test_img_list: [test_img_path1, test_img_path2, ...]
test_label_list: [test_label1, test_label2, ...]
"""
# check the file existence.
# all(): logic and across all the elements in a list
if not (os.path.isdir(root_dir) and all(map(os.path.isfile, \
[image_txt, train_test_split_txt, label_txt]))):
raise IOError("Please check the files or paths existence")
train_img_list = []
train_label_list = [] # the label starts from 1
test_img_list = []
test_label_list = [] # the label starts from 1
# read all the file
# fl_txt is a list for file pointers
# with map(open, [image_txt, train_test_split_txt, label_txt]) as fl_txt:
fl_txt = map(open, [image_txt, train_test_split_txt, label_txt])
# read each file accordingly
for img_path, set_label, label in zip(*fl_txt):
# check if the image id is match, if not, continue
img_path = img_path.rstrip('\n').split(' ')
set_label = set_label.rstrip('\n').split(' ')
label = label.rstrip('\n').split(' ')
if not (img_path[0] == set_label[0] == label[0]):
print(img_path, set_label, label)
continue
# put all the data into list
if int(label[-1]) <= 100: # train set with the first half classes
train_img_list.append(os.path.join(root_dir, img_path[-1]))
train_label_list.append(int(label[-1]) - offset)
elif int(label[-1]) <= 200: # testing set using the second half classes
test_img_list.append(os.path.join(root_dir, img_path[-1]))
test_label_list.append(int(label[-1]) - offset - 100)
else:
print("The set is unclear")
print(img_path, set_label, label)
continue
# shuffle the training list
merged_list = list(zip(train_img_list, train_label_list))
random.shuffle(merged_list)
train_img_list, train_label_list = zip(*merged_list)
# convert tuple to list
train_img_list, train_label_list = \
list(train_img_list), list(train_label_list)
print("training image number is {}".format(len(train_img_list)))
print("testing image number is {}".format(len(test_img_list)))
return train_img_list, train_label_list, test_img_list, test_label_list
class OnlineProductDataset(Dataset):
"""
This is a customized dataset for CUB 200.
"""
def __init__(self, root_dir, train_txt, test_txt, transform=None, is_train=True, offset=1):
self.root_dir = root_dir # root directory of data
self.train_txt = train_txt # dataset info txt
self.test_txt = test_txt
self.transform = transform
self.is_train = is_train
self.offset = offset
self.get_train_test_split()
# shuffle training list
self.shuffle_list()
"""
merge_list = list(zip(self.train_img_list, self.train_label_list))
random.shuffle(merge_list)
self.train_img_list_dummy, self.train_label_list_dummy = tuple(zip(*merge_list))
"""
def get_train_test_split(self):
self.train_img_list = []
self.train_label_list = []
self.test_img_list = []
self.test_label_list = []
# process training dataset.
with open(self.train_txt, 'r') as fid:
line = fid.readline()
for line in fid:
line = line.split(' ')
img_path = os.path.join(self.root_dir, line[3].rstrip('\n'))
# make sure label start from 0
img_label = int(line[1]) - 1
self.train_img_list.append(img_path)
self.train_label_list.append(img_label)
# process testing dataset.
with open(self.test_txt, 'r') as fid:
line = fid.readline()
for line in fid:
line = line.split(' ')
img_path = os.path.join(self.root_dir, line[3].rstrip('\n'))
# make sure label start from 0
img_label = int(line[1]) - 11319
self.test_img_list.append(img_path)
self.test_label_list.append(img_label)
def shuffle_list(self):
"""Shuflle the list"""
merge_list = list(zip(self.train_img_list, self.train_label_list))
random.shuffle(merge_list)
self.train_img_list_dummy, self.train_label_list_dummy = tuple(zip(*merge_list))
random.shuffle(merge_list)
self.train_img_list, self.train_label_list = tuple(zip(*merge_list))
def __len__(self):
if self.is_train:
return len(self.train_img_list)
else:
return len(self.test_img_list)
def __getitem__(self, idx):
if self.is_train:
# Use PIL.Image to read image, and convert it to RGB
img_1 = Image.open(self.train_img_list[idx]).convert('RGB')
label_1 = self.train_label_list[idx]
img_2 = Image.open(self.train_img_list_dummy[idx]).convert('RGB')
label_2 = self.train_label_list_dummy[idx]
if self.transform:
img_1, img_2 = self.transform(img_1), self.transform(img_2)
# sample = {'img_1': img_1, 'img_2': img_2, 'sim_label': float(label_1 == label_2)}
sample = {'img_1': img_1, 'img_2': img_2, 'label_1': label_1, 'label_2': label_2}
# shulffe list for next round
if idx == self.__len__()-1:
self.shuffle_list()
else:
img = Image.open(self.test_img_list[idx]).convert('RGB')
label = self.test_label_list[idx]
if self.transform:
img = self.transform(img)
sample = {'img': img, 'label': label}
return sample
if __name__ == '__main__':
import os
"""
# test cub dataset
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
batch_size = 100
root_dir ="/data1/Guoxian_Dai/CUB_200_2011/images"
image_txt ="/data1/Guoxian_Dai/CUB_200_2011/images.txt"
train_test_split_txt ="/data1/Guoxian_Dai/CUB_200_2011/train_test_split.txt"
label_txt ="/data1/Guoxian_Dai/CUB_200_2011/image_class_labels.txt"
transform = transforms.Compose([transforms.Resize(299),
transforms.CenterCrop(299),
transforms.ToTensor(), # convert PIL Image (HWC, 0-255) to (CHW, 0-1)
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]
)
cub_dataset = CubDataset(root_dir, image_txt, train_test_split_txt, label_txt, transform=transform, is_train=False, offset=1)
dataloader = DataLoader(dataset=cub_dataset, batch_size=64, shuffle=True, num_workers=4)
iters = iter(dataloader)
for _ in range(10):
sample = next(iters)
# sample = next(iter(cub_dataset))
print(type(sample))
print(sample['img'].size())
print(sample['label'].size())
# test online product dataset
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
batch_size = 100
root_dir ="/data/Guoxian_Dai/Stanford_Online_Products"
train_txt ="/data/Guoxian_Dai/Stanford_Online_Products/Ebay_train.txt"
test_txt ="/data/Guoxian_Dai/Stanford_Online_Products/Ebay_test.txt"
transform = transforms.Compose([transforms.Resize((299, 299)),
transforms.CenterCrop(299),
transforms.ToTensor(), # convert PIL Image (HWC, 0-255) to (CHW, 0-1)
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]
)
online_product = OnlineProductDataset(root_dir, train_txt, test_txt, transform=transform, is_train=False, offset=1)
print("training image, label length = {:6d}, {:6d}".format(len(online_product.train_img_list), len(online_product.train_label_list)))
print("Sample data:\n")
# zip() return an iterator (it is not subscrible)
print(list(zip(online_product.train_img_list, online_product.train_label_list))[:5])
print('\n\n')
print("testing image, label length = {:6d}, {:6d}".format(len(online_product.test_img_list), len(online_product.test_label_list)))
print("Sample data:\n")
print(list(zip(online_product.test_img_list, online_product.test_label_list))[:5])
print('\n\n')
dataloader = DataLoader(dataset=online_product, batch_size=64, shuffle=True, num_workers=4)
iters = iter(dataloader)
for _ in range(10):
sample = next(iters)
# sample = next(iter(cub_dataset))
print(type(sample))
print(sample['img'].size())
print(sample['label'].size())
"""
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
batch_size = 100
root_dir ="/data1/Guoxian_Dai/car196"
image_info_mat ="/data1/Guoxian_Dai/car196/cars_annos.mat"
transform = transforms.Compose([transforms.Resize((299, 299)),
transforms.CenterCrop(299),
transforms.ToTensor(), # convert PIL Image (HWC, 0-255) to (CHW, 0-1)
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]
)
car_dataset = CarDataset(root_dir, image_info_mat, transform=transform, is_train=False, offset=1)
print("training image, label length = {:6d}, {:6d}".format(len(car_dataset.train_img_list), len(car_dataset.train_label_list)))
print("Sample data:\n")
# zip() return an iterator (it is not subscrible)
print(list(zip(car_dataset.train_img_list, car_dataset.train_label_list))[:5])
print('\n\n')
print("testing image, label length = {:6d}, {:6d}".format(len(car_dataset.test_img_list), len(car_dataset.test_label_list)))
print("Sample data:\n")
print(list(zip(car_dataset.test_img_list, car_dataset.test_label_list))[:5])
print('\n\n')
dataloader = DataLoader(dataset=car_dataset, batch_size=64, shuffle=True, num_workers=4)
iters = iter(dataloader)
for _ in range(10):
sample = next(iters)
# sample = next(iter(cub_dataset))
print(type(sample))
print(sample['img'].size())
print(sample['label'].size())