-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdataset.py
executable file
·76 lines (62 loc) · 2.64 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np
import pickle as pkl
from torch.utils.data import Dataset
import torch
import os
class BubbleData(Dataset):
def __init__(self, path_price_data, path_embed_data, load_embeds=True, len= None):
with open(path_price_data, "rb") as f:
self.data = pkl.load(f)
self.len = len
if load_embeds:
with open(path_embed_data, "rb") as f:
self.embed_data = pkl.load(f)
self.load_embeds = load_embeds
def __getitem__(self, idx):
data_dict = self.data[idx]
if self.load_embeds:
return (self.embed_data[idx]["embeddings"],
torch.tensor(data_dict["lookahead_starts"]),
torch.tensor(data_dict["lookahead_ends"]),
data_dict["n_bubbles"],
torch.tensor(data_dict["bubble"]),
self.embed_data[idx]["time_feats"],
torch.tensor(self.embed_data[idx]["len"]))
else:
return (torch.tensor(data_dict["lookback_price"]),
torch.tensor(data_dict["lookahead_starts"]),
torch.tensor(data_dict["lookahead_ends"]),
data_dict["n_bubbles"],
torch.tensor(data_dict["bubble"]))
def __len__(self):
if self.len != None:
return self.len
else:
return len(self.data)
class BubbleDatav2(Dataset):
def __init__(self, price_data_path, embed_folder_path, load_embeds=True):
self.folder_path = embed_folder_path
self.load_embeds = load_embeds
with open(price_data_path, "rb") as f:
self.data = pkl.load(f)
assert len(os.listdir(self.folder_path)) == len(self.data)
def __getitem__(self, idx):
data_dict = self.data[idx]
if self.load_embeds:
with open(f"{self.folder_path}/{idx}.pkl", "rb") as f:
embed_data = pkl.load(f)
return (embed_data["embeddings"],
torch.tensor(data_dict["lookahead_starts"]),
torch.tensor(data_dict["lookahead_ends"]),
data_dict["n_bubbles"],
torch.tensor(data_dict["bubble"]),
embed_data["time_feats"],
torch.tensor(embed_data["len"]))
else:
return (torch.tensor(data_dict["lookback_price"]),
torch.tensor(data_dict["lookahead_starts"]),
torch.tensor(data_dict["lookahead_ends"]),
data_dict["n_bubbles"],
torch.tensor(data_dict["bubble"]))
def __len__(self):
return len(self.data)