-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhaartrack.py
142 lines (115 loc) · 4.89 KB
/
haartrack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import cv2
import numpy as np
import time
PREFIX_MODULE = "cascades/"
def w_h_divided_by(image, divisor):
"""Return an image's dimensions, divided by a value."""
h, w = image.shape[:2]
return (w/divisor, h/divisor)
class Face(object):
"""Represents face on the image"""
def __init__(self):
self.faceRect = None
self.noseRect = None
self.mouthRect = None
def draw(self, image):
if self.faceRect is not None:
x, y, w, h = self.faceRect
cv2.rectangle(image, (x, y), (x+w, y+h), (255,0,0))
if self.noseRect:
x, y, w, h = self.noseRect
cv2.rectangle(image, (x, y), (x+w, y+h), (255,0,0))
if self.mouthRect:
x, y, w, h = self.mouthRect
cv2.rectangle(image, (x, y), (x+w, y+h), (255,0,0))
class Hand(object):
"""Represents hand on the image"""
def __init__(self):
self.handRect = None
def draw(self, image):
if self.handRect is not None:
x, y, w, h = self.handRect
cv2.rectangle(image, (x, y), (x+w, y+h), (255,0,0))
class FaceTracker(object):
"""A tracker for facial features: face, nose, (mouth?)."""
def __init__(self, scaleFactor = 1.2, minNeighbors = 2, flags = cv2.cv.CV_HAAR_SCALE_IMAGE):
self.scaleFactor = scaleFactor
self.minNeighbors = minNeighbors
self.flags = flags
self._faces = []
self._faceClassifier = cv2.CascadeClassifier(PREFIX_MODULE + 'haarcascade_frontalface_alt.xml')
self._eyeClassifier = cv2.CascadeClassifier(PREFIX_MODULE + 'haarcascade_eye.xml')
self._noseClassifier = cv2.CascadeClassifier(PREFIX_MODULE + 'haarcascade_mcs_nose.xml')
self._mouthClassifier = cv2.CascadeClassifier(PREFIX_MODULE + 'haarcascade_mcs_mouth.xml')
@property
def faces(self):
"""The tracked facial features."""
return self._faces
def update(self, img):
"""Update the tracked facial features."""
self._faces = []
cp = img.copy()
image = cv2.cvtColor(cp, cv2.COLOR_BGR2GRAY)
image = cv2.equalizeHist(image)
minSize = w_h_divided_by(image, 6)
maxSize = w_h_divided_by(image, 2)
cv2.imshow('Equ', image)
faceRects = self._faceClassifier.detectMultiScale(
image, self.scaleFactor, self.minNeighbors, self.flags,
minSize, maxSize)
print faceRects
if faceRects is not None:
for faceRect in faceRects:
face = Face()
face.faceRect = faceRect
x, y, w, h = faceRect
# Seek a nose in the middle part of the face.
searchRect = (x+w/4, y+h/4, w/2, h/2)
"""
face.noseRect = self._detectOneObject(
self._noseClassifier, image, searchRect, 32)
# Seek a mouth in the lower-middle part of the face.
searchRect = (x+w/6, y+h*2/3, w*2/3, h/3)
face.mouthRect = self._detectOneObject(
self._mouthClassifier, image, searchRect, 16)
"""
self._faces.append(face)
def _detectOneObject(self, classifier, image, rect, ratio):
x, y, w, h = rect
minSize = w_h_divided_by(image, ratio)
subImage = image[y:y+h, x:x+w]
subRects = classifier.detectMultiScale(
subImage, self.scaleFactor, self.minNeighbors,
self.flags, minSize)
if len(subRects) == 0:
return None
subX, subY, subW, subH = subRects[0]
return (x+subX, y+subY, subW, subH)
class HandTracker(object):
"""A tracker for hand features"""
def __init__(self, scaleFactor = 1.1, minNeighbors = 4, flags = cv2.cv.CV_HAAR_DO_CANNY_PRUNING):
#name = PREFIX_MODULE + "haarcascade_hand_2.xml"
#name = PREFIX_MODULE + "fist.xml"
#name = PREFIX_MODULE + "palm.xml"
name = PREFIX_MODULE + "hand_cascade.xml"
self.scaleFactor = scaleFactor
self.minNeighbors = minNeighbors
self.flags = flags
self._hands = []
self._handClassifier = cv2.CascadeClassifier(name)
@property
def hands(self):
"""The tracked facial features."""
return self._hands
def update(self, img):
"""Update the tracked facial features."""
self._hands = []
cp = img.copy()
image = cv2.cvtColor(cp, cv2.COLOR_BGR2GRAY)
handRects = self._handClassifier.detectMultiScale(
image, self.scaleFactor, self.minNeighbors, self.flags,
(70, 70), (175, 125))
for r in handRects:
h = Hand()
h.handRect = r
self._hands.append(h)