Skip to content

Why is the number of nodes used as the in_dim_node of the Embedding?  #28

@Win7ery

Description

@Win7ery
net_params['in_dim'] = torch.unique(dataset.train[0][0].ndata['feat'],dim=0).size(0) # node_dim (feat is an integer) #code in main
......
in_dim_node = net_params['in_dim'] # node_dim (feat is an integer) #graphtransformer/nets/SBMs_node_classification/graph_transformer_net.py line:19
......
self.embedding_h = nn.Embedding(in_dim_node, hidden_dim) # node feat is an integer #graphtransformer/nets/SBMs_node_classification/graph_transformer_net.py line:45

Why is the number of nodes used as the in_dim_node of the embedding? What is the node feature in SBMs? I get an error when I use the new node feature because its value is greater than in_dim_node.

为什么使用节点的个数作为embedding的in_dim_node?SBMs中的节点特征是指的什么?我使用新的节点特征时由于其值大于in_dim_node导致报错。

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions