-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
246 lines (210 loc) · 8.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
from pathlib import Path
import argparse
from src.handler import RobustZScoreNorm
from src.trainner import DoubleAdaptFramework
from src.dataset import RollingTaskSampler
def load_and_split_data(data_path: str, train_ratio: float = 0.6, valid_ratio: float = 0.2):
"""Load and split data into train, validation and test sets"""
# Load data
df = pd.read_csv(data_path)
# Sort by datetime
df = df.sort_values('datetime')
# Split data
n_samples = len(df)
train_size = int(n_samples * train_ratio)
valid_size = int(n_samples * valid_ratio)
train_df = df[:train_size]
valid_df = df[train_size:train_size + valid_size]
test_df = df[train_size + valid_size:]
return train_df, valid_df, test_df
def preprocess_data(train_df, valid_df, test_df, scaler_path: str):
"""Preprocess data using RobustZScoreNorm"""
# Initialize scaler
scaler = RobustZScoreNorm(clip_outlier=True)
# Fit scaler on training data
X_train = train_df.drop(['datetime', 'label'], axis=1).values
scaler.fit(X_train)
# Save scaler
scaler.save(scaler_path)
# Transform all datasets
X_train = scaler.transform(X_train)
X_valid = scaler.transform(valid_df.drop(['datetime', 'label'], axis=1).values)
X_test = scaler.transform(test_df.drop(['datetime', 'label'], axis=1).values)
# Get labels
y_train = train_df['label'].values
y_valid = valid_df['label'].values
y_test = test_df['label'].values
return X_train, y_train, X_valid, y_valid, X_test, y_test
def create_tasks(X, y, dates, task_sampler, generate_tensor: bool = True):
"""Create tasks using RollingTaskSampler
Args:
X: Feature matrix
y: Target values
dates: Datetime values
task_sampler: RollingTaskSampler instance
generate_tensor: Whether to convert arrays to tensors
Returns:
List of tasks with support and query sets
"""
# Create tasks using generate_tasks method
tasks = task_sampler.generate_tasks(
features=X,
labels=y,
to_tensor=generate_tensor
)
return tasks
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str, required=True)
parser.add_argument('--output_dir', type=str, default='outputs')
parser.add_argument('--support_size', type=int, default=60)
parser.add_argument('--query_size', type=int, default=20)
parser.add_argument('--max_epochs', type=int, default=10)
parser.add_argument('--generate_tensor', type=bool, default=True)
# Add new arguments for framework parameters
parser.add_argument('--num_head', type=int, default=8)
parser.add_argument('--temperature', type=float, default=10.0)
parser.add_argument('--lr_theta', type=float, default=0.001)
parser.add_argument('--lr_da', type=float, default=0.01)
parser.add_argument('--patience', type=int, default=5)
parser.add_argument('--sigma', type=float, default=1.0)
parser.add_argument('--reg', type=float, default=0.5)
parser.add_argument('--first_order', type=bool, default=True)
parser.add_argument('--adapt_x', type=bool, default=True)
parser.add_argument('--adapt_y', type=bool, default=True)
parser.add_argument('--sequence_length', type=int, default=10,
help='Length of sequence for LSTM')
args = parser.parse_args()
# Create output directory
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
# Load and split data
train_df, valid_df, test_df = load_and_split_data(args.data_path)
# Initialize scaler
scaler_path = output_dir / 'scaler.npy'
scaler = RobustZScoreNorm(clip_outlier=True)
# Fit scaler on training data only
train_features = train_df.drop(['datetime', 'label'], axis=1).values
scaler.fit(train_features)
scaler.save(scaler_path)
# Transform all datasets
train_scaled = scaler.transform(train_df.drop(['datetime', 'label'], axis=1).values)
valid_scaled = scaler.transform(valid_df.drop(['datetime', 'label'], axis=1).values)
test_scaled = scaler.transform(test_df.drop(['datetime', 'label'], axis=1).values)
# Create sequence data after scaling
def create_sequence_data_from_scaled(scaled_features: np.ndarray,
labels: np.ndarray,
sequence_length: int):
"""Create sequence data from scaled features"""
X, y = [], []
for i in range(len(scaled_features) - sequence_length):
X.append(scaled_features[i:(i + sequence_length)])
y.append(labels[i + sequence_length])
return np.array(X), np.array(y)
# Create sequences for each dataset
X_train, y_train = create_sequence_data_from_scaled(
train_scaled,
train_df['label'].values,
args.sequence_length
)
X_valid, y_valid = create_sequence_data_from_scaled(
valid_scaled,
valid_df['label'].values,
args.sequence_length
)
X_test, y_test = create_sequence_data_from_scaled(
test_scaled,
test_df['label'].values,
args.sequence_length
)
print(f"Sequence data shapes:")
print(f"X_train: {X_train.shape} (batch_size, sequence_length, feature_dim)")
print(f"X_valid: {X_valid.shape}")
print(f"X_test: {X_test.shape}")
# Initialize task sampler
task_sampler = RollingTaskSampler(
interval=5,
support_length=args.support_size,
query_length=args.query_size
)
# Create tasks with sequence data
train_tasks = create_tasks(
X_train, y_train,
train_df['datetime'].values[args.sequence_length:],
task_sampler,
generate_tensor=args.generate_tensor
)
valid_tasks = create_tasks(
X_valid, y_valid,
valid_df['datetime'].values[args.sequence_length:],
task_sampler,
generate_tensor=args.generate_tensor
)
test_tasks = create_tasks(
X_test, y_test,
test_df['datetime'].values[args.sequence_length:],
task_sampler,
generate_tensor=args.generate_tensor
)
# Define a custom RNN model that properly handles LSTM output
class RNNModel(nn.Module):
def __init__(self, input_dim: int, hidden_dim: int = 64):
super().__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True)
self.linear = nn.Linear(hidden_dim, 1)
def forward(self, x):
# Add sequence dimension if input is 2D
if len(x.shape) == 2:
x = x.unsqueeze(1) # [batch_size, 1, feature_dim]
# LSTM returns (output, (h_n, c_n))
lstm_out, _ = self.lstm(x)
# Take the last output
last_out = lstm_out[:, -1, :]
# Project to prediction
pred = self.linear(last_out)
return pred.squeeze(-1) # Ensure output is [batch_size]
# Initialize model and framework
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
feature_dim = X_train.shape[2] # Get feature dimension from sequence data
# Use the custom RNN model instead of Sequential
model = RNNModel(input_dim=feature_dim)
# Initialize framework with all parameters
framework = DoubleAdaptFramework(
model=model,
criterion=nn.MSELoss(),
x_dim=feature_dim,
num_head=args.num_head,
temperature=args.temperature,
lr_theta=args.lr_theta,
lr_da=args.lr_da,
early_stopping_patience=args.patience,
device=device,
sigma=args.sigma,
reg=args.reg,
first_order=args.first_order,
adapt_x=args.adapt_x,
adapt_y=args.adapt_y,
is_rnn=True
)
# Offline training
print("Starting offline training...")
framework.offline_training(
train_tasks=train_tasks,
valid_tasks=valid_tasks,
max_epochs=args.max_epochs,
patience=args.patience
)
# Online training
print("Starting online training...")
metric = framework.online_training(
valid_tasks=valid_tasks,
test_tasks=test_tasks
)
print(f"Final test metric: {metric:.4f}")
if __name__ == '__main__':
main()