Skip to content

Commit b9b8799

Browse files
fix: add embedding_metadata support in aiplatform.matching_engine.matching_engine_index_endpoint.MatchNeighbor
1 parent 2195411 commit b9b8799

File tree

1 file changed

+6
-2
lines changed

1 file changed

+6
-2
lines changed

google/cloud/aiplatform/matching_engine/matching_engine_index_endpoint.py

Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@
1616
#
1717

1818
from dataclasses import dataclass, field
19-
from typing import Dict, List, Optional, Sequence, Tuple, Union
19+
from typing import Dict, List, Optional, Sequence, Tuple, Union, Any
2020

2121
from google.auth import credentials as auth_credentials
2222
from google.cloud.aiplatform import base
@@ -208,7 +208,8 @@ class MatchNeighbor:
208208
For example, values [1,2,3] with dimensions [4,5,6] means value 1 is
209209
of the 4th dimension, value 2 is of the 4th dimension, and value 3 is
210210
of the 6th dimension.
211-
211+
embedding_metadata (Dict[str,Any]):
212+
Optional. The embedding metadata of the matching datapoint.
212213
"""
213214

214215
id: str
@@ -220,6 +221,7 @@ class MatchNeighbor:
220221
numeric_restricts: Optional[List[NumericNamespace]] = None
221222
sparse_embedding_values: Optional[List[float]] = None
222223
sparse_embedding_dimensions: Optional[List[int]] = None
224+
embedding_metadata: Optional[Dict[str,Any]] = None
223225

224226
def from_index_datapoint(
225227
self, index_datapoint: gca_index_v1beta1.IndexDatapoint
@@ -276,6 +278,8 @@ def from_index_datapoint(
276278
self.sparse_embedding_dimensions = (
277279
index_datapoint.sparse_embedding.dimensions
278280
)
281+
if index_datapoint.embedding_metadata is not None:
282+
self.embedding_metadata = dict(index_datapoint.embedding_metadata)
279283
return self
280284

281285
def from_embedding(self, embedding: match_service_pb2.Embedding) -> "MatchNeighbor":

0 commit comments

Comments
 (0)