Skip to content

Commit bacc380

Browse files
bors[bot]Haxeil
andauthored
Merge #901
901: GDscript builtin functions to rust r=Bromeon a=Haxeil here is the implementation of the builtin functions in GDscript back to rust, regarding this #893 issue. https://docs.godotengine.org/en/stable/classes/[email protected]# Co-authored-by: Haxeil <[email protected]>
2 parents 549af60 + 46f3de1 commit bacc380

File tree

3 files changed

+381
-1
lines changed

3 files changed

+381
-1
lines changed

gdnative-core/src/globalscope.rs

+379
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,379 @@
1+
//! `fmod` is `%` operator on `f32`;
2+
//! ```rust
3+
//! use std::ops::Rem;
4+
//! assert_eq!(f32::rem(12.0, 10.0), 2.0);
5+
//! ```
6+
7+
use std::f32::consts::TAU;
8+
use std::ops::Rem;
9+
use std::ops::{Range, RangeInclusive};
10+
11+
const CMP_EPSILON: f32 = 0.00001;
12+
13+
/// Converts a 2D point expressed in the `cartesian` coordinate system (X and Y axis)
14+
/// to the `polar` coordinate system (a distance from the origin and an angle `(in radians)`).
15+
#[inline]
16+
pub fn cartasian2polar(x: f32, y: f32) -> (f32, f32) {
17+
((x * x + y * y).sqrt(), y.atan2(x))
18+
}
19+
20+
/// Converts from `decibels` to linear energy (audio).
21+
#[inline]
22+
pub fn db2linear(db: f32) -> f32 {
23+
f32::exp(db * 0.115_129_255)
24+
}
25+
26+
/// Returns the `position` of the first `non-zero` digit, after the decimal point.
27+
/// Note that the `maximum` return `value` is `10`, which is a design decision in the implementation.
28+
/// # Examples:
29+
/// ```
30+
/// use gdnative_core::globalscope::step_decimals;
31+
/// assert_eq!(step_decimals(5.0), 0);
32+
/// assert_eq!(step_decimals(12.0004), 4);
33+
/// assert_eq!(step_decimals(0.000000004), 9);
34+
/// ```
35+
#[inline]
36+
pub fn step_decimals(step: f32) -> i32 {
37+
const MAXN: usize = 10;
38+
const SD: [f32; MAXN] = [
39+
0.9999, // somehow compensate for floating point error
40+
0.09999,
41+
0.009999,
42+
0.0009999,
43+
0.00009999,
44+
0.000009999,
45+
0.0000009999,
46+
0.00000009999,
47+
0.000000009999,
48+
0.0000000009999,
49+
];
50+
51+
let abs = step.abs();
52+
let int_abs: i32 = step as i32;
53+
let decs: f32 = abs - (int_abs as f32); // strip away integer part;
54+
for (i, item) in SD.iter().enumerate().take(MAXN) {
55+
if decs >= *item {
56+
return i.try_into().unwrap();
57+
}
58+
}
59+
0
60+
}
61+
62+
/// Moves `range.start()` toward `range.end()` by the `delta` `value`.
63+
/// Use a negative `delta` value `range.end()` move away.
64+
/// # Examples:
65+
/// ```
66+
/// use gdnative_core::globalscope::move_toward;
67+
/// assert_eq!(move_toward(10.0..=5.0, 4.), 6.);
68+
/// assert_eq!(move_toward(10.0..=5.0, -1.5), 11.5);
69+
/// assert_eq!(move_toward(4.0..=8.0, 1.0), 5.0);
70+
/// assert_eq!(move_toward(4.0..=8.0, 5.0), 8.0);
71+
/// assert_eq!(move_toward(8.0..=4.0, 1.0), 7.0);
72+
/// assert_eq!(move_toward(8.0..=4.0, 5.0), 4.0);
73+
/// ```
74+
#[inline]
75+
pub fn move_toward(range: RangeInclusive<f32>, delta: f32) -> f32 {
76+
if (range.end() - range.start()).abs() <= delta {
77+
*range.end()
78+
} else {
79+
range.start() + (range.end() - range.start()).signum() * delta
80+
}
81+
}
82+
83+
/// Returns an "eased" value of x based on an easing function defined with `curve`.
84+
/// This easing function is based on an `exponent`. The curve can be any floating-point number,
85+
/// with specific values leading to the following behaviors:
86+
#[inline]
87+
pub fn ease(mut s: f32, curve: f32) -> f32 {
88+
if s < 0.0 {
89+
s = 0.0;
90+
} else if s > 1.0 {
91+
s = 1.0;
92+
}
93+
if curve > 0.0 {
94+
if curve < 1.0 {
95+
1.0 - (1.0 - s).powf(1.0 / curve)
96+
} else {
97+
s.powf(curve)
98+
}
99+
} else if curve < 0.0 {
100+
//inout ease
101+
102+
if s < 0.5 {
103+
(s * 2.0).powf(-curve) * 0.5
104+
} else {
105+
(1.0 - (1.0 - (s - 0.5) * 2.0).powf(-curve)) * 0.5 + 0.5
106+
}
107+
} else {
108+
0.0 // no ease (raw)
109+
}
110+
}
111+
112+
/// Linearly interpolates between two values by the factor defined in weight.
113+
/// To perform interpolation, weight should be between 0.0 and 1.0 (inclusive).
114+
/// However, values outside this range are allowed and can be used to perform extrapolation.
115+
/// ```
116+
/// use gdnative_core::globalscope::lerp;
117+
/// assert_eq!(lerp(0.0..=4.0, 0.75), 3.0);
118+
/// ```
119+
#[inline]
120+
pub fn lerp(range: RangeInclusive<f32>, weight: f32) -> f32 {
121+
range.start() + (range.end() - range.start()) * weight
122+
}
123+
124+
/// Linearly interpolates between two angles (in radians) by a normalized value.
125+
/// Similar to lerp, but interpolates correctly when the angles wrap around `TAU`.
126+
/// To perform eased interpolation with `lerp_angle`, combine it with `ease` or `smoothstep`
127+
/// use std::f32::consts::{PI, TAU};
128+
/// use gdnative::globalscope::lerp_angle;
129+
///
130+
/// assert_eq!(lerp_angle(-PI..PI, 0.0), -PI);
131+
/// assert_eq!(lerp_angle(-PI..PI, 1.0), -PI);
132+
/// assert_eq!(lerp_angle(PI..-PI, 0.0), PI);
133+
/// assert_eq!(lerp_angle(PI..-PI, 1.0), PI);
134+
/// assert_eq!(lerp_angle(0.0..TAU, 0.0), 0.0);
135+
/// assert_eq!(lerp_angle(0.0..TAU, 1.0), 0.0);
136+
/// assert_eq!(lerp_angle(TAU..0, 0.0), TAU);
137+
/// assert_eq!(lerp_angle(TAU..0, 1.0), TAU);
138+
#[inline]
139+
pub fn lerp_angle(range: Range<f32>, amount: f32) -> f32 {
140+
let difference = f32::rem(range.end - range.start, TAU);
141+
142+
let distance = f32::rem(2.0 * difference, TAU) - difference;
143+
range.start + distance * amount
144+
}
145+
146+
/// Returns the floating-point modulus of `a/b` that wraps equally in `positive` and `negative`.
147+
/// # Examples:
148+
/// ```rust
149+
/// use gdnative_core::globalscope::fposmod;
150+
/// assert_eq!(fposmod(-1.5, 1.5), 0.0);
151+
/// assert_eq!(fposmod(-1.0, 1.5), 0.5);
152+
/// assert_eq!(fposmod(-0.5, 1.5), 1.0);
153+
/// assert_eq!(fposmod(0.0, 1.5), 0.0);
154+
/// ```
155+
#[inline]
156+
pub fn fposmod(x: f32, y: f32) -> f32 {
157+
let mut value = f32::rem(x, y);
158+
if ((value < 0.0) && (y > 0.0)) || ((value > 0.0) && (y < 0.0)) {
159+
value += y;
160+
}
161+
162+
value += 0.0;
163+
value
164+
}
165+
166+
/// Returns an interpolation or extrapolation factor considering the range specified in `range.start()` and `range.end()`,
167+
/// and the interpolated value specified in `weight`.
168+
/// The returned value will be between `0.0` and `1.0` if `weight` is between `range.start()` and `range.end()` (inclusive).
169+
/// If `weight` is located outside this range,
170+
/// then an extrapolation factor will be returned (return value lower than `0.0` or greater than `1.0`).
171+
/// # Examples:
172+
/// ```rust
173+
/// use gdnative_core::globalscope::inverse_lerp;
174+
/// assert_eq!(inverse_lerp(20.0..=30.0, 27.5), 0.75);
175+
/// ```
176+
#[inline]
177+
pub fn inverse_lerp(range: RangeInclusive<f32>, value: f32) -> f32 {
178+
(value - range.start()) / (range.end() - range.start())
179+
}
180+
181+
/// Returns the result of smoothly interpolating the value of `s` between `0` and `1`, based on the where `s` lies with respect to the edges `from` and `to`.
182+
/// The return value is `0` if `s <= from`, and `1` if `s >= to`. If `s` lies between `from` and `to`, the returned value follows an S-shaped curve that maps `s` between `0` and `1`.
183+
/// This S-shaped curve is the cubic Hermite interpolator, given by `f(y) = 3*y^2 - 2*y^3` where `y = (x-from) / (to-from)`.
184+
/// Compared to ease with a curve value of `-1.6521`, smoothstep returns the smoothest possible curve with no sudden changes in the derivative.
185+
/// If you need to perform more advanced transitions, use Tween or AnimationPlayer.
186+
/// # Examples:
187+
/// ```rust
188+
/// use gdnative_core::globalscope::smoothstep;
189+
/// assert_eq!(smoothstep(0.0, 2.0, -5.0), 0.0);
190+
/// assert_eq!(smoothstep(0.0, 2.0, 0.5), 0.15625);
191+
/// assert_eq!(smoothstep(0.0, 2.0, 1.0), 0.5);
192+
/// assert_eq!(smoothstep(0.0, 2.0, 2.0), 1.0);
193+
/// ```
194+
195+
#[inline]
196+
pub fn smoothstep(from: f32, to: f32, s: f32) -> f32 {
197+
if is_equal_approx(from, to) {
198+
return from;
199+
}
200+
let s = ((s - from) / (to - from)).clamp(0.0, 1.0);
201+
s * s * (3.0 - 2.0 * s)
202+
}
203+
204+
/// Returns `true` if `a` and `b` are approximately equal to each other.
205+
/// Here, approximately equal means that `a` and `sb` are within a small internal epsilon of each other,
206+
/// which scales with the magnitude of the numbers.
207+
/// Infinity values of the same sign are considered equal.
208+
#[inline]
209+
pub fn is_equal_approx(a: f32, b: f32) -> bool {
210+
if a == b {
211+
return true;
212+
}
213+
let mut tolerance = CMP_EPSILON * a.abs();
214+
if tolerance < CMP_EPSILON {
215+
tolerance = CMP_EPSILON;
216+
}
217+
(a - b).abs() < tolerance
218+
}
219+
220+
/// Returns true if s is zero or almost zero.
221+
/// This method is faster than using is_equal_approx with one value as zero.
222+
#[inline]
223+
pub fn is_zero_approx(s: f32) -> bool {
224+
s.abs() < CMP_EPSILON
225+
}
226+
227+
/// Converts from linear energy to decibels (audio).
228+
/// This can be used to implement volume sliders that behave as expected (since volume isn't linear).
229+
#[inline]
230+
pub fn linear2db(nrg: f32) -> f32 {
231+
nrg.ln() * 0.115_129_255
232+
}
233+
234+
/// Returns the nearest equal or larger power of 2 for integer value.
235+
/// In other words, returns the smallest value a where `a = pow(2, n)` such that `value <= a` for some non-negative integer `n`.
236+
/// # Examples:
237+
/// ```rust
238+
/// use gdnative_core::globalscope::nearest_po2;
239+
/// assert_eq!(nearest_po2(3), 4);
240+
/// assert_eq!(nearest_po2(4), 4);
241+
/// assert_eq!(nearest_po2(5), 8);
242+
/// assert_eq!(nearest_po2(0), 0);
243+
/// assert_eq!(nearest_po2(-1), 0);
244+
/// ```
245+
#[inline]
246+
pub fn nearest_po2(value: i32) -> u32 {
247+
if value <= 0 {
248+
return 0;
249+
}
250+
(value as u32).next_power_of_two()
251+
}
252+
253+
/// Converts a 2D point expressed in the polar coordinate system
254+
/// (a distance from the origin r and an angle th (radians)) to the cartesian coordinate system (X and Y axis).
255+
#[inline]
256+
pub fn cartesian2polar(r: f32, th: f32) -> (f32, f32) {
257+
(r * th.cos(), r * th.sin())
258+
}
259+
260+
/// Returns the integer modulus of a/b that wraps equally in positive and negative.
261+
/// # Examples:
262+
/// ```rust
263+
/// use gdnative_core::globalscope::posmod;
264+
/// const VALS: [i32; 7] = [0, 1, 2, 0, 1, 2, 0];
265+
/// for i in (-3..4).enumerate() {
266+
/// assert_eq!(posmod(i.1, 3), VALS[i.0]);
267+
/// }
268+
/// ```
269+
#[inline]
270+
pub fn posmod(a: i32, b: i32) -> i32 {
271+
let mut value = a % b;
272+
if ((value < 0) && (b > 0)) || ((value > 0) && (b < 0)) {
273+
value += b;
274+
}
275+
value
276+
}
277+
278+
/// Maps a value from range `range.from` to `range_to`.
279+
/// # Example:
280+
/// ```rust
281+
/// use gdnative_core::globalscope::range_lerp;
282+
/// assert_eq!(range_lerp(75.0, 0.0..=100.0, -1.0..=1.0), 0.5);
283+
/// ```
284+
#[inline]
285+
pub fn range_lerp(
286+
value: f32,
287+
range_from: RangeInclusive<f32>,
288+
range_to: RangeInclusive<f32>,
289+
) -> f32 {
290+
lerp(range_to, inverse_lerp(range_from, value))
291+
}
292+
293+
/// Snaps float value s to a given step.
294+
/// This can also be used to round a floating point number to an arbitrary number of decimals.
295+
/// ```rust
296+
/// use gdnative_core::globalscope::stepify;
297+
/// assert_eq!(stepify(100.0, 32.0), 96.0);
298+
/// assert_eq!(stepify(3.14159, 0.01), 3.1399999);
299+
/// ```
300+
#[inline]
301+
pub fn stepify(mut value: f32, step: f32) -> f32 {
302+
if step != 0.0 {
303+
value = (value / step + 0.5).floor() * step;
304+
}
305+
value
306+
}
307+
308+
/// Wraps float value between min and max.
309+
/// Usable for creating loop-alike behavior or infinite surfaces.
310+
/// # Examples :
311+
/// ```rust
312+
/// use gdnative_core::globalscope::wrapf;
313+
/// use std::f32::consts::{TAU, PI};
314+
///
315+
/// //Infinite loop between 5.0 and 9.9
316+
/// let value = 1.5;
317+
/// let angle = 0.70707;
318+
/// let value = wrapf(value + 0.1, 5.0..10.0);
319+
/// //Infinite rotation (in radians)
320+
/// let angle = wrapf(angle + 0.1, 0.0..TAU);
321+
/// //Infinite rotation (in radians)
322+
/// let angle = wrapf(angle + 0.1, -PI..PI);
323+
/// ```
324+
/// # Tests :
325+
/// ```rust
326+
/// use gdnative_core::globalscope::wrapf;
327+
/// use std::f32::consts::{TAU, PI};
328+
///
329+
/// let value = 0.5;
330+
/// assert_eq!(wrapf(value + 0.1, 5.0..0.0), 5.6);
331+
/// let angle = PI/4.0;
332+
/// assert_eq!(wrapf(angle, 0.0..TAU), 0.7853982);
333+
/// assert_eq!(wrapf(1.0, 0.5..1.5), 1.0);
334+
/// assert_eq!(wrapf(0.75, -0.5..0.5), -0.25);
335+
/// ```
336+
///
337+
/// # Note:
338+
/// If min is 0, this is equivalent to fposmod, so prefer using that instead.
339+
/// wrapf is more flexible than using the fposmod approach by giving the user control over the minimum value.
340+
#[inline]
341+
pub fn wrapf(value: f32, range: Range<f32>) -> f32 {
342+
let range_diff: f32 = range.end - range.start;
343+
if is_zero_approx(range_diff) {
344+
return range.start;
345+
}
346+
value - (range_diff * ((value - range.start / range_diff).floor()))
347+
}
348+
349+
/// Wraps integer value between min and max.
350+
/// Usable for creating loop-alike behavior or infinite surfaces.
351+
/// # Example :
352+
/// ```rust
353+
/// use gdnative_core::globalscope::wrapi;
354+
///
355+
/// //Infinite loop between 5 and 9
356+
/// let frame = 10;
357+
/// let frame = wrapi(frame + 1, 5..10);
358+
/// //result is -2
359+
/// let result = wrapi(-6, -5..-1);
360+
/// ```
361+
/// # Tests :
362+
/// ```rust
363+
/// use gdnative_core::globalscope::wrapi;
364+
///
365+
/// assert_eq!(wrapi(1, -1..2), 1);
366+
/// assert_eq!(wrapi(-1, 2..4), 3);
367+
/// assert_eq!(wrapi(1, 2..-1), 1);
368+
/// ```
369+
/// # Note:
370+
/// If min is 0, this is equivalent to posmod, so prefer using that instead.
371+
/// wrapi is more flexible than using the posmod approach by giving the user control over the minimum value.
372+
#[inline]
373+
pub fn wrapi(value: i32, range: Range<i32>) -> i32 {
374+
let range_diff = range.end - range.start;
375+
if range_diff == 0 {
376+
return range.start;
377+
}
378+
range.start + (((value - range.start % range_diff) + range_diff) % range_diff)
379+
}

gdnative-core/src/lib.rs

+1
Original file line numberDiff line numberDiff line change
@@ -43,6 +43,7 @@ mod macros;
4343
pub mod core_types;
4444

4545
pub mod export;
46+
pub mod globalscope;
4647
pub mod init;
4748
pub mod log;
4849
pub mod object;

gdnative/src/lib.rs

+1-1
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,7 @@
8181
// Items, which are #[doc(hidden)] in their original crate and re-exported with a wildcard, lose
8282
// their hidden status. Re-exporting them manually and hiding the wildcard solves this.
8383
#[doc(inline)]
84-
pub use gdnative_core::{core_types, export, init, log, object, profiler};
84+
pub use gdnative_core::{core_types, export, globalscope, init, log, object, profiler};
8585

8686
// Implementation details (e.g. used by macros).
8787
// However, do not re-export macros (on crate level), thus no wildcard

0 commit comments

Comments
 (0)