This repository has been archived by the owner on Feb 7, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_delta.py
136 lines (96 loc) · 4.5 KB
/
plot_delta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
import healpy as hp
import matplotlib.pyplot as plt
from online_mean import add_sample
from _plotting import split_bins, multi_row_label, symlog_no_zero
from _config import *
filenames = list(data_path.glob('fields.*.npz'))
logger.info('found %d data files', len(filenames))
n = len(shells)-1
input_cls = np.load(spec_path/'matter.npy')[..., :lmax+1]
delta_cls = np.zeros((n*(n+1)//2, lmax+1))
sigma_cls = np.zeros_like(delta_cls)
for i, filename in enumerate(filenames):
with np.load(filename) as npz:
cls_ = npz['delta_cls'][..., :lmax+1]
add_sample(i, cls_, delta_cls, var=sigma_cls)
np.sqrt(sigma_cls, out=sigma_cls)
input_cls = split_bins(input_cls)
delta_cls = split_bins(delta_cls)
sigma_cls = split_bins(sigma_cls)
pw = hp.pixwin(nside, lmax=lmax)
l = np.arange(1, lmax+1)
plot_bins = np.searchsorted(shells[1:], showz)
fig, axes = plt.subplots(len(plot_bins), 1, figsize=(4, 4), sharex=True, sharey=True)
for i, ax in zip(plot_bins, axes):
zmin, zmax = shells[i], shells[i+1]
ax.annotate(f'${zmin:.2f} \\leq z \\leq {zmax:.2f}$', xy=(1., 1.), xytext=(-5, -8),
xycoords='axes fraction', textcoords='offset points',
ha='right', va='top', backgroundcolor=(1., 1., 1., 0.5))
cl = delta_cls[i][0][1:]
tl = input_cls[i][0][1:] * pw[1:]**2
sl = sigma_cls[i][0][1:]
ax.plot(l, (2*l+1)*cl)
ax.plot(l, (2*l+1)*tl, c='k', lw=1.)
ax.fill_between(l, (2*l+1)*(cl+sl), (2*l+1)*(cl-sl),
fc=plt.rcParams['hatch.color'], ec='none', zorder=-1)
ax.axvline(nside, c=plt.rcParams['grid.color'], ls=plt.rcParams['grid.linestyle'],
lw=plt.rcParams['grid.linewidth'], zorder=-1)
axes[0].set_xscale('log')
axes[0].set_yscale('log')
axes[-1].set_xlabel('angular mode number $l$')
axes[0].set_ylabel('mean angular power spectrum $(2l + 1) \\, \\langle\\Delta C_l^{\\delta\\delta}\\rangle$')
fig.tight_layout()
multi_row_label(fig, axes[0])
fig.savefig(plot_path/'delta.pdf', dpi=300, bbox_inches='tight')
plt.close()
###
fig, axes = plt.subplots(len(plot_bins), 1, figsize=(4, 4), sharex=True, sharey=True)
for i, ax in zip(plot_bins, axes):
zmin, zmax = shells[i], shells[i+1]
ax.annotate(f'${zmin:.2f} \\leq z \\leq {zmax:.2f}$', xy=(1., 1.), xytext=(-5, -8),
xycoords='axes fraction', textcoords='offset points',
ha='right', va='top', backgroundcolor=(1., 1., 1., 0.5))
cl = delta_cls[i][0][1:]
tl = input_cls[i][0][1:] * pw[1:]**2
sl = sigma_cls[i][0][1:]
ax.plot(l, (cl - tl)/np.fabs(tl))
ax.plot(l, np.zeros_like(l), c='k', lw=1.)
ax.fill_between(l, +sl/np.fabs(tl), -sl/np.fabs(tl),
fc=plt.rcParams['hatch.color'], ec='none', zorder=-1)
ax.grid(True, which='major', axis='y')
ax.axvline(nside, c=plt.rcParams['grid.color'], ls=plt.rcParams['grid.linestyle'],
lw=plt.rcParams['grid.linewidth'], zorder=-1)
axes[0].set_ylim(-0.9, 0.9)
axes[0].set_xscale('log')
axes[0].set_yscale('symlog', linthresh=1e-2, linscale=0.45, subs=[2, 3, 4, 5, 6, 7, 8, 9])
axes[-1].set_xlabel('angular mode number $l$')
axes[0].set_ylabel('mean relative error $\\langle\\Delta C_l^{\\delta\\delta}/\\Delta_l^{\\delta\\delta}\\rangle$')
fig.tight_layout()
multi_row_label(fig, axes[0])
symlog_no_zero(axes)
fig.savefig(plot_path/'delta_err.pdf', dpi=300, bbox_inches='tight')
plt.close()
###
fig, axes = plt.subplots(len(plot_bins), 1, figsize=(4, 4), sharex=True, sharey=True)
for i, ax in zip(plot_bins, axes):
zmin, zmax = shells[i], shells[i+1]
ax.annotate(f'${zmin:.2f} \\leq z \\leq {zmax:.2f}$', xy=(1., 1.), xytext=(-5, -8),
xycoords='axes fraction', textcoords='offset points',
ha='right', va='top', backgroundcolor=(1., 1., 1., 0.5))
cl = delta_cls[i][0][1:]
tl = input_cls[i][0][1:] * pw[1:]**2
sl = sigma_cls[i][0][1:]
ax.plot(l, (cl - tl)/sl)
ax.plot(l, np.zeros_like(l), c='k', lw=1.)
ax.fill_between(l, +np.ones_like(l), -np.ones_like(l),
fc=plt.rcParams['hatch.color'], ec='none', zorder=-1)
ax.axvline(nside, c=plt.rcParams['grid.color'], ls=plt.rcParams['grid.linestyle'],
lw=plt.rcParams['grid.linewidth'], zorder=-1)
axes[0].set_ylim(-1.5, 1.5)
axes[-1].set_xlabel('angular mode number $l$')
axes[0].set_ylabel('mean residuals $\\langle\\Delta C_l^{\\delta\\delta}/\\sigma_l^{\\delta\\delta}\\rangle$')
fig.tight_layout()
multi_row_label(fig, axes[0])
fig.savefig(plot_path/'delta_res.pdf', dpi=300, bbox_inches='tight')
plt.close()