|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "Script to obtain diagonals of arrays, including rectangular arrays." |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "import numpy as np" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": 2, |
| 22 | + "metadata": {}, |
| 23 | + "outputs": [], |
| 24 | + "source": [ |
| 25 | + "np.random.seed(536)" |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "code", |
| 30 | + "execution_count": 3, |
| 31 | + "metadata": {}, |
| 32 | + "outputs": [], |
| 33 | + "source": [ |
| 34 | + "test_wide = np.random.randint(0, 10, (4,10))\n", |
| 35 | + "test_long = np.random.randint(0, 10, (10,4))" |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "code", |
| 40 | + "execution_count": 4, |
| 41 | + "metadata": {}, |
| 42 | + "outputs": [ |
| 43 | + { |
| 44 | + "data": { |
| 45 | + "text/plain": [ |
| 46 | + "array([[5, 2, 3, 5, 5, 1, 5, 9, 4, 0],\n", |
| 47 | + " [9, 1, 4, 0, 6, 1, 4, 5, 0, 9],\n", |
| 48 | + " [9, 7, 2, 1, 0, 8, 8, 0, 3, 4],\n", |
| 49 | + " [6, 9, 0, 3, 7, 1, 5, 8, 8, 3]])" |
| 50 | + ] |
| 51 | + }, |
| 52 | + "execution_count": 4, |
| 53 | + "metadata": {}, |
| 54 | + "output_type": "execute_result" |
| 55 | + } |
| 56 | + ], |
| 57 | + "source": [ |
| 58 | + "test_wide" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": 5, |
| 64 | + "metadata": {}, |
| 65 | + "outputs": [ |
| 66 | + { |
| 67 | + "data": { |
| 68 | + "text/plain": [ |
| 69 | + "array([[4, 5, 0, 5],\n", |
| 70 | + " [0, 8, 2, 2],\n", |
| 71 | + " [4, 5, 7, 6],\n", |
| 72 | + " [3, 4, 4, 1],\n", |
| 73 | + " [1, 6, 8, 6],\n", |
| 74 | + " [2, 5, 4, 6],\n", |
| 75 | + " [1, 5, 3, 8],\n", |
| 76 | + " [8, 5, 4, 6],\n", |
| 77 | + " [9, 0, 5, 4],\n", |
| 78 | + " [4, 3, 1, 2]])" |
| 79 | + ] |
| 80 | + }, |
| 81 | + "execution_count": 5, |
| 82 | + "metadata": {}, |
| 83 | + "output_type": "execute_result" |
| 84 | + } |
| 85 | + ], |
| 86 | + "source": [ |
| 87 | + "test_long" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": 6, |
| 93 | + "metadata": {}, |
| 94 | + "outputs": [ |
| 95 | + { |
| 96 | + "data": { |
| 97 | + "text/plain": [ |
| 98 | + "array([5, 2, 6])" |
| 99 | + ] |
| 100 | + }, |
| 101 | + "execution_count": 6, |
| 102 | + "metadata": {}, |
| 103 | + "output_type": "execute_result" |
| 104 | + } |
| 105 | + ], |
| 106 | + "source": [ |
| 107 | + "np.diag(test_long, 1) # compare with numpy's inbuilt function" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": 7, |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [ |
| 115 | + { |
| 116 | + "data": { |
| 117 | + "text/plain": [ |
| 118 | + "array([1, 5])" |
| 119 | + ] |
| 120 | + }, |
| 121 | + "execution_count": 7, |
| 122 | + "metadata": {}, |
| 123 | + "output_type": "execute_result" |
| 124 | + } |
| 125 | + ], |
| 126 | + "source": [ |
| 127 | + "test_wide[[0,3], [5,6]]" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": 11, |
| 133 | + "metadata": {}, |
| 134 | + "outputs": [], |
| 135 | + "source": [ |
| 136 | + "def get_diag(arr, k=0, from_element=None):\n", |
| 137 | + " '''from element = coordinates of an array element,\n", |
| 138 | + " use if want to calculate the offset from coords\n", |
| 139 | + " instead of giving the offset itself'''\n", |
| 140 | + " N,M = arr.shape\n", |
| 141 | + " if from_element != None:\n", |
| 142 | + " k = from_element[1] - from_element[0] # same as numpy\n", |
| 143 | + " if k > 0:\n", |
| 144 | + " row_lim = min(N, M-k)\n", |
| 145 | + " possible_rows = np.arange(0, row_lim)\n", |
| 146 | + " col_lim = min(M, k+N)\n", |
| 147 | + " possible_cols = np.arange(k, col_lim)\n", |
| 148 | + " elif k =< 0:\n", |
| 149 | + " row_lim = min(N, -k+M)\n", |
| 150 | + " possible_rows = np.arange(-k, row_lim)\n", |
| 151 | + " col_lim = min(M, N-(-k))\n", |
| 152 | + " possible_cols = np.arange(0, col_lim)\n", |
| 153 | + " return(arr[possible_rows, possible_cols])" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "code", |
| 158 | + "execution_count": 26, |
| 159 | + "metadata": {}, |
| 160 | + "outputs": [ |
| 161 | + { |
| 162 | + "data": { |
| 163 | + "text/plain": [ |
| 164 | + "array([4, 8, 7, 1])" |
| 165 | + ] |
| 166 | + }, |
| 167 | + "execution_count": 26, |
| 168 | + "metadata": {}, |
| 169 | + "output_type": "execute_result" |
| 170 | + } |
| 171 | + ], |
| 172 | + "source": [ |
| 173 | + "get_diag(test_long, k=0)" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_type": "code", |
| 178 | + "execution_count": 27, |
| 179 | + "metadata": {}, |
| 180 | + "outputs": [ |
| 181 | + { |
| 182 | + "data": { |
| 183 | + "text/plain": [ |
| 184 | + "array([8, 0, 1])" |
| 185 | + ] |
| 186 | + }, |
| 187 | + "execution_count": 27, |
| 188 | + "metadata": {}, |
| 189 | + "output_type": "execute_result" |
| 190 | + } |
| 191 | + ], |
| 192 | + "source": [ |
| 193 | + "get_diag(test_long, k=-7)" |
| 194 | + ] |
| 195 | + }, |
| 196 | + { |
| 197 | + "cell_type": "code", |
| 198 | + "execution_count": 30, |
| 199 | + "metadata": {}, |
| 200 | + "outputs": [ |
| 201 | + { |
| 202 | + "data": { |
| 203 | + "text/plain": [ |
| 204 | + "array([9, 0, 4])" |
| 205 | + ] |
| 206 | + }, |
| 207 | + "execution_count": 30, |
| 208 | + "metadata": {}, |
| 209 | + "output_type": "execute_result" |
| 210 | + } |
| 211 | + ], |
| 212 | + "source": [ |
| 213 | + "get_diag(test_wide, k=7)" |
| 214 | + ] |
| 215 | + }, |
| 216 | + { |
| 217 | + "cell_type": "code", |
| 218 | + "execution_count": null, |
| 219 | + "metadata": {}, |
| 220 | + "outputs": [], |
| 221 | + "source": [] |
| 222 | + } |
| 223 | + ], |
| 224 | + "metadata": { |
| 225 | + "kernelspec": { |
| 226 | + "display_name": "Python 3.7.4 64-bit", |
| 227 | + "language": "python", |
| 228 | + "name": "python37464bitdff059f72f8b417fb86b0d43a0194990" |
| 229 | + }, |
| 230 | + "language_info": { |
| 231 | + "codemirror_mode": { |
| 232 | + "name": "ipython", |
| 233 | + "version": 3 |
| 234 | + }, |
| 235 | + "file_extension": ".py", |
| 236 | + "mimetype": "text/x-python", |
| 237 | + "name": "python", |
| 238 | + "nbconvert_exporter": "python", |
| 239 | + "pygments_lexer": "ipython3", |
| 240 | + "version": "3.7.4" |
| 241 | + } |
| 242 | + }, |
| 243 | + "nbformat": 4, |
| 244 | + "nbformat_minor": 2 |
| 245 | +} |
0 commit comments