-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathkaplansky.tex
3003 lines (2524 loc) · 149 KB
/
kaplansky.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{The Kaplansky conjectures}
\section{Introduction}
\begin{definition}
Let $R$ be a ring and $G$ be a group. The \emph{group ring} $R[G]$ consists of finite formal $R$-linear sums \[
R[G] = \set{ \sum_{i=1}^n r_{g_i} \cdot g_i }{ r_{g_i} \in R, g_i \in G }
\] with multiplication \[
(\sum r_g \cdot g)(\sum s_h \cdot h) = \sum r_g s_h \cdot g h = \sum_k (\sum_{gh = k} r_g s_h) \cdot k.
\]
\end{definition}
In this course, we'll almost always have $R = \Z$ or $R = K$ a field; in the latter case, one often calls $K[G]$ the \emph{group algebra}.
\begin{center}
\fbox{\parbox{20em}{
\centering
From now on: \\ $G$ will always be a group, \\ $K$ will always be a field, and \\ $R$ will always be a ring.
}}
\end{center}
\begin{example}
For $G = \Z = \gen{t}$, $R[G]$ is the ring of Laurent polynomials over $R$, usually denoted $R[t,t^{-1}]$.
\end{example}
A viewpoint due to Noether: Representations of $G$ on $K$-vector spaces are $K[G]$-modules.
\begin{warning}
$K[G]$ is non-commutative unless $G$ is abelian. It is (left) Noetherian only in special settings and it is never semisimple for infinite $G$ (cf.\ Maschke's theorem).
\end{warning}
Although group rings tend to have bad ring theoretic properties, they conjecturally have nice elementary properties.
Note first that for $k \in K \setminus \{0\}$ and $g \in G$, the element $kg \in K[G]$ is a unit (with $(k \cdot g)^{-1} = k^{-1} \cdot g^{-1}$); such units are called \emph{trivial}.
A group is called \emph{torsion-free} if it has no non-trivial finite order elements.
For example, fundamental groups of aspherical manifolds are torsion-free.
\begin{definition}
Let $\mathcal{P}$ be a property of groups.
A group $G$ is \emph{virtually $\mathcal{P}$} if it has a finite-index subgroup $G_0$ with $\mathcal{P}$.
\end{definition}
As another example, a finitely generated subgroup of $\GL_n(\C)$ is virtually torsion-free (Selberg).
\begin{conjecture}[The Kaplansky conjectures]
If $G$ is torsion-free, then $K[G]$ has
\begin{itemize}
\item no non-trivial units: $\alpha \beta = \beta \alpha = 1 \implies \alpha = kg$ for some $k \in K^\times, g \in G$
\item no non-zero zero divisors: $\alpha \beta = 0 \implies \alpha = 0$ or $\beta = 0$, and
\item no non-trivial idempotents: $\alpha^2 = \alpha \implies \alpha = 0$ or $\alpha = 1$.
\end{itemize}
For \emph{any} $G$ (possibly with torsion), $K[G]$ is
\begin{itemize}
\item directly finite: $\alpha \beta = 1 \implies \beta \alpha = 1$.
\end{itemize}
\end{conjecture}
These are the unit conjecture, zero divisor conjecture, idempotent conjecture and direct finiteness conjectures respectively.
(Direct finiteness is also called \emph{Dedekind finiteness} or \emph{von Neumann finiteness}.)
\begin{remark}
The unit conjecture is false; the others are open.
\end{remark}
\begin{remark}
Torsion-freeness is essential. For example, if $g \in G$ has order $n \geq 2$ then $(1 - g)(1 + g + \dots + g^{n-1}) = 1 - g^n = 0$.
\end{remark}
\begin{remark}
These conjectures are ``local'' in the sense that they only depend on the finitely generated subgroups of $G$.
\end{remark}
\begin{proposition}
\label{proposition:kaplansky_relations}
For a given torsion-free group $G$ and field $K$, we have \[
\text{unit conj.} \implies
\text{zero divisor conj.} \implies
\text{idempotent conj.} \implies
\text{direct finiteness}
\]
\end{proposition}
\begin{proof}
The 3 weaker conjectures are ring theoretic statements and their implications are easy ring theoretic observations: if $\alpha \beta = 1$ and $\beta \alpha \neq 1$ then $(\beta \alpha)^2 = \beta (\alpha \beta) \alpha = \beta \alpha$ is a non-trivial idempotent.
If $\alpha^2 = \alpha$ is a non-trivial idempotent, then $\alpha^2 - \alpha = \alpha (\alpha - 1) = 0$ with both factors non-zero.
The unit conjecture is a ``group ring theoretic'' statement and the proof of the implication requires the following (which we'll prove later using group theory):
\begin{theorem}[Connell]
$K[G]$ is prime if and only if $G$ has no non-trivial finite normal subgroup.
\end{theorem}
A non-commutative ring $R$ is called \emph{prime} if the zero ideal is not a product of two non-zero ideals.
This is equivalent to saying that for all $0 \neq \alpha, \beta \in R$ there exists $\gamma \in R$ with $\alpha \gamma \beta \neq 0$.
Since $G$ is torsion-free, $K[G]$ is prime.
Suppose that $\alpha \beta = 0$ for $\alpha, \beta \neq 0$.
Then there exists $\gamma \in K[G]$ with $\beta \gamma \alpha \neq 0$.
Now \[
(1 + \beta \gamma \alpha) (1 - \beta \gamma \alpha) = 1 - \beta \gamma (\alpha \beta) \gamma \alpha = 1.
\]
Thus $1 + \beta \gamma \alpha$ is a non-trivial unit, since if it were trivial then $\beta \gamma \alpha = kg - 1$ which implies $k^2 g^2 - 2kg + 1 = 0$ which is absurd unless $g = 1$, which then forces $\beta \gamma \alpha \in K$ so $\beta \gamma \alpha = 0$ since it is nilpotent.
\end{proof}
\begin{definition}
A group $G$ is \emph{residually finite} if for all $1 \neq g \in G$ there exists a homomorphism $\phi_g \colon G \to Q$ to a finite group such that $\phi_g (g) \neq 1$.
\end{definition}
We will see later that the direct finiteness conjecture is true for $K = \C$.
Here we prove:
\begin{proposition}
\label{proposition:rf_implies_df}
Let $G$ be residually finite.
Then $K[G]$ is directly finite.
\end{proposition}
\begin{notation}
For $\alpha \in K[G]$ and $g \in G$, let $(\alpha)_g \in K$ denote the coefficient of $g$ in $\alpha$.
Then $\alpha = \sum_{g \in G} (\alpha)_g \cdot g$ and $(\alpha)_g = 0$ for all but finitely many elements of $G$.
\end{notation}
\begin{definition}
An element $\alpha \in K[G]$ has \emph{support} \[
\supp(\alpha) = \set{ g \in G }{ (\alpha)_g \neq 0 }.
\]
\end{definition}
\begin{proof}
Suppose $\alpha, \beta \in K[G]$ with $\alpha \beta = 1$.
A group homomorphism $\phi \colon G \to Q$ induces a ring homomorphism $K[G] \to K[Q]$.
Thus $K[Q]$ is a $K[G]$-module.
Note that $Q$ is a basis for the $K$-vector space $K[Q]$, so if $Q$ is finite this is a finite dimensional representation of $G$ on $V = K[Q]$.
Let $A = \supp(\alpha)$, $B = \supp(\beta)$.
Let $C = BA = \set{ ba }{ a \in A, b \in B}$.
By residual finiteness, there is a finite quotient $\phi \colon G \epi Q$ which is injective on $C$: take the product of homomorphisms $\phi_g$ given by the definition over all $g \in C^{-1} C \setminus \{1\}$ (and let $Q$ be the image of this product homomorphism).
Now the induced maps $\rho_\alpha, \rho_\beta \in \End(V)$ satisfy $\rho_\alpha \circ \rho_\beta = \id_V$ and thus -- since $V = K[Q]$ is finite dimensional -- we have $\rho_\beta \circ \rho_\alpha = \id_V$.
But we can write $\beta \alpha = \sum_{c \in C} (\beta \alpha)_c \cdot c$ and thus \[
\rho_{\beta \alpha}(1_Q) = \phi(\beta \alpha) = \sum_{c \in C} (\beta \alpha)_c \cdot \phi(c) = 1_Q
\] forces (since all $\phi(c)$ are distinct!) \[
(\beta \alpha)_c = \begin{cases}
1 & c = 1 \\
0 & \text{else}
\end{cases}
\] that is, $\beta \alpha = 1$.
\end{proof}
\section{Proving the unit conjecture}
There is only one way known to prove the unit conjecture: the unique product property.
\begin{definition}
A group $G$ has the \emph{unique product property} (or ``has unique products'', or ``has UP'') if for all non-empty finite subsets $A, B \subseteq G$ there exists $g \in G$ such that $g = ab$ for a unique pair $(a, b) \in A \times B$.
\end{definition}
\begin{example}
In $(\Z, +)$ the ``product'' $\max(A) + \max(B)$ is unique.
\end{example}
\begin{remark}
A group with UP is torsion-free: if $1 \neq H \leq G$ is a finite subgroup, set $A = B = H$.
Each product occurs exactly $|H|$ times.
\end{remark}
\begin{proposition}
A group $G$ with UP satisfies the zero divisor conjecture.
\end{proposition}
\begin{proof}
Let $\alpha, \beta \in K[G]$ with $\alpha, \beta \neq 0$ and set $A = \supp(\alpha), B = \supp(\beta)$.
Write
\begin{align*}
\alpha = \sum_{a \in A} \lambda_a \cdot a \\
\beta = \sum_{b \in B} \mu_b \cdot b.
\end{align*}
Then if $g_0 = a_0 b_0$ is a unique product for $(A, B)$ we have \[
(\alpha \beta)_{g_0} = \sum_{gh = g_0} \lambda_g \mu_h = \lambda_{a_0} \mu_{b_0} \neq 0
\] and thus $\alpha \beta \neq 0$.
\end{proof}
For the unit conjecture we need something that \emph{a priori} is stronger.
\begin{definition}
A group $G$ has the \emph{two unique products property} if for all finite subsets $A, B \subseteq G$ with $|A| |B| \geq 2$, there exist elements $g_0 \neq g_1$ of $G$ such that $g_0 = a_0 b_0$ for a unique pair $(a_0, b_0) \in A \times B$ and $g_1 = a_1 b_1$ for a unique pair $(a_1, b_1) \in A \times B$.
\end{definition}
\begin{proposition}[Strojnowski]
The two unique product property is equivalent to the unique product property.
\end{proposition}
\begin{proof}
TUP $\implies$ UP is immediate (TUP doesn't apply if $|A| = |B| = 1$, but if $|A| = 1$ or $|B| = 1$, then all products are unique!)
Suppose now $G$ has UP but that finite sets $A, B \subseteq G$ with $|A| |B| \geq 2$ have only $1$ unique product.
Without loss of generality, by translating $A$ on the left and $B$ on the right, we can assume that $1 = 1 \cdot 1$ is the unique unique product.
Now let $C = B^{-1} A$, $D = B A^{-1}$.
We claim that $C \cdot D$ has no unique product, giving the desired contradiction.
Every element of $CD$ can be written as $b_1^{-1} a_1 b_2 a_2^{-1}$ for some $a_1, a_2 \in A$, $b_1, b_2 \in B$.
If $(a_1, b_2) \neq (1, 1)$, then by assumption there is another pair $(a_1', b_2')$ with $a_1' b_2' = a_1 b_2$ and thus \[
(b_1^{-1} a_1) \cdot (b_2 a_2^{-1}) = (b_1^{-1} a_1') \cdot (b_2' a_2^{-1})
\] is \emph{not} a unique product for $(C, D)$.
If $(a_1, b_2) = (1, 1)$, then unless $(a_2, b_1) = (1, 1)$ we can write \[
b_1^{-1} \cdot a_2^{-1} = (a_2 b_1)^{-1} = (a_2' b_1')^{-1} = (b_1')^{-1} (a_2')^{-1}
\]
with $a_2 \neq a_2'$ (and $b_1 \neq b_1'$).
Finally, if $(a_1, b_2) = (1, 1)$ and $(a_2, b_1) = (1, 1)$, then our element of $CD$ is $1 = 1 \cdot 1 = b^{-1} \cdot b = a \cdot a^{-1}$ for any $a \in A$ or $b \in B$.
\end{proof}
\begin{corollary}
\label{corollary:UP_implies_unit_conjecture}
A group with UP satisfies the unit conjecture.
\end{corollary}
\begin{proof}
Exercise.
\end{proof}
Most examples of groups with UP are orderable groups.
\begin{definition}
A group $G$ is \emph{left-orderable} if it admits a total order $<$ that is left-invariant, that is, $g < h$ implies $kg < kh$ for all $g, h, k \in G$.
\end{definition}
\begin{remark}
Being left-orderable and right-orderable are equivalent, but admitting a bi-invariant total order is much stronger!
\end{remark}
\begin{proposition}
A left-orderable group has UP.
\end{proposition}
\begin{proof}
We show that the maximum of $AB$ is a unique product.
Let $b_0 = \max B$.
Then for all $a \in A$ and $b \in B \setminus \{b_0\}$ we have $b < b_0 \implies ab < ab_0$.
Thus the maximum of $AB$ can only be written as $a \cdot b_0$ and this expression must be unique (as $a_i \neq a_j \implies a_i b_0 \neq a_j b_0$).
\end{proof}
\begin{remark}
It is \emph{not} necessarily true that $\max(AB) = \max(A) \max(B)$!
\end{remark}
\begin{definition}
For a left-ordered group $(G, <)$, the set \[
\cP = \set{ g \in G }{ 1 < g }
\] is called its \emph{positive cone}.
\end{definition}
The positive cone satisfies
\begin{enumerate}
\item $\cP^2 \subseteq \cP$ (that is, it is a subsemigroup)
\item $G = \cP \sqcup \{1\} \sqcup \cP^{-1}$.
\end{enumerate}
\begin{lemma}
Left-orderings are equivalent to choice of $\cP \subset G$ satisfying (1) and (2).
\end{lemma}
\begin{proof}
Exercise (hint: $x < y \Leftrightarrow 1 < x^{-1} y$).
\end{proof}
\begin{lemma}
A group $G$ is left-orderable if and only if for all $g_1, \dots, g_n \in G \setminus \{1\}$ there exists a choice of signs $\epsilon_1, \dots, \epsilon_n \in \{1, -1\}$ such that \[
1 \notin S(g_1^{\epsilon_1}, \dots, g_n^{\epsilon_n}),
\] the subsemigroup generated by $g_1^{\epsilon_1}, \dots, g_n^{\epsilon_n}$.
\end{lemma}
\begin{proof}
$\Rightarrow$ set $\epsilon_i = 1$ if $g_i \in \cP$ (that is, $1 < g_i$) else $-1$.
$\Leftarrow$ we use compactness (slogan: inverse limit of non-empty finite sets is non-empty).
Let $X = \{1, -1\}^{G \setminus \{1\}}$ be the set of functions $G \setminus \{1\} \to \{1, -1\}$ and let $A \subset X$ denote those functions that define a positive cone.
This is equivalent to satisfying (simultaneously!) the choice of sign condition for all possible $g_1, \dots, g_n \in G \setminus \{1\}$ (actually $n = 3$ suffices).
That is, if we denote such functions $A_{\{g_1, \dots, g_n\}}$ then \[
A = \bigcap_{\text{finite } S \subset G \setminus \{1\}} A_S.
\]
But $X$ is compact by Tychonoff and the $A_S$ are closed (only depend on the restriction to $S \to \{1, -1\}$) and have all finite intersections non-empty by assumption.
Thus $A \neq \emptyset$.
\end{proof}
We will apply the lemma to prove the following:
\begin{theorem}[Burns--Hale]
\label{theorem:burns_hale}
If every finitely generated non-trivial subgroup of $G$ has a non-trivial left-orderable quotient, then $G$ is left-orderable.
\end{theorem}
\begin{definition}
Let $\mathcal{P}$ be a property of groups.
A group $G$ is \emph{locally $\mathcal{P}$} if every finitely generated subgroup of $G$ has $\mathcal{P}$.
\end{definition}
We call a group \emph{indicable} if it either maps onto $\Z$ or is trivial.
So the Burns--Hale theorem says in particular that a \emph{locally indicable} group is left-orderable.
\begin{corollary}[Higman, 1940]
\label{corollary:LI_kaplansky}
Locally indicable groups satisfy the conjectures on units and zero divisors.
\end{corollary}
\begin{proof}
Locally indicable $\implies$ left-orderable $\implies$ UP.
\end{proof}
\begin{example}
The following groups are locally indicable:
\begin{itemize}
\item free groups (subgroups of free groups are free by Nielsen--Schreier)
\item fundamental groups of surfaces of non-positive Euler characteristic
\item torsion-free nilpotent groups
\item torsion-free one-relator groups i.e.\ groups of the form $\gp{X}{r}$ where $r \in F(X)$ is not a proper power (Brodskii, Howie)
\end{itemize}
\end{example}
\begin{proof}[Proof of Burns--Hale theorem]
Suppose $G$ is not left-orderable and let $n$ be minimal such that there exist $g_1, \dots, g_n \in G \setminus \{1\}$ with $1 \in S(g_1^{\epsilon_1}, \dots, g_n^{\epsilon_n})$ for all choices of $\epsilon_i$.
Let $H = \gen{g_1, \dots, g_n} \leq G$.
By assumption, $H$ has a non-trivial left-orderable quotient $q \colon H \epi Q$.
By relabelling, assume $g_1, \dots, g_t \in \ker(q)$ and $g_{t+1}, \dots, g_n \notin \ker(q)$.
As $t < n$, we can assign $\epsilon_1, \dots, \epsilon_t$ such that \[
1 \notin S(g_1^{\epsilon_1}, \dots, g_t^{\epsilon_t}),
\] and since $Q$ is left-orderable we can assign $\epsilon_{t+1}, \dots, \epsilon_n$ such that \[
1 \notin S(q(g_{t+1})^{\epsilon_{t+1}}, \dots, q(g_n)^{\epsilon_n}).
\]
But this implies that \[
1 \notin S(g_1^{\epsilon_1}, \dots, g_n^{\epsilon_n})
\] as every non-empty product of those elements \emph{either} only uses $g_1, \dots, g_t$ so lies in $S(g_1^{\epsilon_1}, \dots, g_t^{\epsilon_t})$ \emph{or} has image under $q$ in $S(q(g_{t+1})^{\epsilon_{t+1}}, \dots, q(g_n)^{\epsilon_n})$.
\end{proof}
\subsection*{The dynamical point of view}
\begin{proposition}
The group $\Homeo^+(\R)$ of orientation-preserving (i.e.\ increasing) homeomorphisms of the real line is left-orderable.
\end{proposition}
\begin{proof}
Let $\{x_0, x_1, x_2, \dots\} \subset \R$ be dense (e.g.\ enumerate $\Q$).
Then we define $f < g$ for $f \neq g \in \Homeo^+(\R)$ by \[
f < g \Leftrightarrow f(x_i) < g(x_i) \text{ for the minimal } i \in \N \text{ s.t. } f(x_i) \neq g(x_i).
\]
(Such an $i$ exists as continuous functions to Hausdorff spaces are determined by their values on dense subsets.)
Left-invariance is immediate as elements of $\Homeo^+(\R)$ are strictly monotone (and we take $\Homeo^+(\R)$ to act on $\R$ on the left!).
Let $f, g, h \in \Homeo^+(\R)$ with $f < g$ and $g < h$ and let $i \in \N$ be the minimal index such that $f(x_i) \neq g(x_i)$ or $g(x_i) \neq h(x_i)$.
Then $f(x_i) \leq g(x_i)$ and $g(x_i) \leq h(x_i)$ with at least one inequality being strict, so $f(x_i) < h(x_i)$.
Moreover, for $j < i$ we have $f(x_j) = g(x_j) = h(x_j)$, so $f < h$.
\end{proof}
In fact:
\begin{proposition}
A countable group is left-orderable if and only if it is a subgroup of $\Homeo^+(\R)$.
\end{proposition}
\begin{proof}
Exercise.
\end{proof}
\begin{proposition}
Suppose that $N \normal G$ such that $N$ and $G / N$ both have UP.
Then $G$ has UP.
\end{proposition}
\begin{proof}
Let $A, B \subset G$ be finite non-empty subsets and write $\phi \colon G \epi G / N$.
Suppose $\phi(a_1) \cdot \phi(b_1)$ is a unique product for $\phi(A) := \set{\phi(a)}{a \in A}$ and $\phi(B)$ in $G/N$.
By replacing $A$ with $a_1^{-1} A$ and $B$ with $B b_1^{-1}$, we can assume without loss of generality that $\phi(a_1) = \phi(b_1) = 1$.
Thus for $a \in A$ and $b \in B$ we have \[
a b \in N \Leftrightarrow \phi(a b) = 1 \Leftrightarrow \phi(a) = 1 \text{ and } \phi(b) = 1 \Leftrightarrow a \in N \text{ and } b \in N
\]
Hence the unique product of the non-empty finite sets $A \cap N$ and $B \cap N$ in the UP group $N$ is a unique product for $A$ and $B$.
\end{proof}
\subsection*{Diffuse groups}
We now meet the weakest property known to imply UP.
\begin{definition}
Let $A \subset G$ be a finite subset.
An element $a \in A$ is called \emph{extremal} if for all $1 \neq s \in G$, either $as \notin A$ or $a s^{-1} \notin A$ (or both).
A group is called \emph{diffuse} if every non-empty finite subset contains an extremal element.
\end{definition}
% TODO add figure showing extremal points on boundary of a disc
\begin{remark}
\label{remark:diffuse_intersection}
$a \in A$ is extremal if and only if $a^{-1} A \cap A^{-1} a = \{1\}$.
\end{remark}
\begin{remark}
This notion has been called ``weakly diffuse'' with diffuse reserved for the \emph{a priori} stronger property that any $A \subset G$ with $2 \leq |A| < \infty$ has at least $2$ extremal points, but they turn out to be equivalent.
\end{remark}
\begin{proposition}
\label{proposition:LO_diffuse_UP}
For any group we have the implications \[
\text{left-orderable} \implies \text{diffuse} \implies \text{UP}.
\]
\end{proposition}
\begin{proof}
Suppose $(G, <)$ is left-ordered.
Let $A \subset G$ be an arbitrary non-empty finite subset and let $a = \max A$.
For any $1 \neq s \in G$ either $1 < s$ or $1 < s^{-1}$, which implies either $a < a s$ or $a < a s^{-1}$.
Thus $a$ is extremal.
Hence $G$ is diffuse.
Suppose $G$ is diffuse and let $A, B \subset G$ be non-empty finite subsets.
Consider $C = AB$.
Let $c \in C$ be an extremal point and pick some $a_1 \in A, b_1 \in B$ such that $c = a_1 b_1$.
We claim that this is a unique product.
Suppose for the sake of contradiction that $c = a_2 b_2$ with $b_1 \neq b_2$ (and $a_2 \in A$, $b_2 \in B$).
Then
\begin{align*}
c \cdot (b_2^{-1} b_1) &= a_2 b_2 \cdot (b_2^{-1} b_1) = a_2 b_1 \in C \\
c \cdot (b_2^{-1} b_1)^{-1} &= a_1 b_1 \cdot (b_1^{-1} b_2) = a_1 b_2 \in C
\end{align*}
contradicting diffuseness.
\end{proof}
\begin{remark}
Given finite $B \subset G$ we can easily decide if all non-empty $A \subseteq B$ have an extremal point because if $a \in A_0 \subseteq A_1$ and $a$ is extremal in $A_1$, then it is also extremal in $A_0$.
Thus we can run a greedy algorithm, starting with $A = B$ and throwing out all extremal points at each step (checking extremality in finitely many steps via \Cref{remark:diffuse_intersection}), seeing if we terminate with $A = \emptyset$ or with a non-empty set $A$ that falsifies diffuseness.
\end{remark}
\begin{exercise}
Show that the following classes of groups are closed under taking extensions:
\begin{itemize}
\item locally indicable groups
\item left-orderable groups
\item diffuse groups
\end{itemize}
\end{exercise}
\section{Hyperbolic groups}
Geodesics in the hyperbolic plane resemble tripods.
% Note to self: probably should have given a proper definition of tripod.
% TODO add figure of slim triangle and comparison tripod
Given 3 points $a, b, c$ in a metric space, they map isometrically to the vertices $\overline{a}, \overline{b}, \overline{c}$ of a unique tripod with central vertex $\overline{o}$.
The length $d(\overline{o}, \overline{a})$ must be \[
\frac{1}{2}(d(a, b) + d(a, c) - d(b, c)) =: (b \cdot c)_a
\] which we call the \emph{Gromov product}.
Morally, it measures ``distance to the incircle''.
Let $X$ be a geodesic metric space, i.e. a metric space such that for all $x, y \in X$ there is an isometric embedding $p \colon [0, d(x, y)] \to X$ of an interval (standard metric on $\R$) such that $p(0) = x$ and $p(d(x, y)) = y$.
We denote the image of such a geodesic $p$ from $x$ to $y$ by $[x, y]$.
For a geodesic triangle $\Delta = \Delta(a, b, c)$, define \[
\chi_\Delta \colon \Delta \to T_\Delta
\] by mapping the three geodesics isometrically to the comparison tripod $T_\Delta$.
For $\delta \geq 0$, $\Delta$ is called \emph{$\delta$-thin} if $p, q \in \chi_\Delta^{-1}(t)$ implies $d(p, q) \leq \delta$ for all $t \in T_\Delta$.
\begin{definition}
Let $\delta \geq 0$.
A geodesic metric space $X$ is called \emph{$\delta$-hyperbolic} if every geodesic triangle is $\delta$-thin.
$X$ is called \emph{(Gromov) hyperbolic} if it is $\delta$-hyperbolic for some $\delta \geq 0$.
\end{definition}
\begin{example}
A tree is $0$-hyperbolic.
\end{example}
\begin{warning}
There are multiple equivalent definitions of hyperbolicity, but the constant $\delta$ will need to change in general.
\end{warning}
\begin{definition}
A group $G$ is called \emph{hyperbolic} if it acts properly cocompactly by isometries on a proper geodesic hyperbolic space.
\end{definition}
\begin{example}
\begin{itemize}
\item A free group acting a tree (deck transformations on universal cover of rose graph).
% TODO add figure of Cayley graph of F_2?
\item The fundamental group of a closed hyperbolic surface acting on the hyperbolic plane.
\end{itemize}
\end{example}
\begin{definition}
An action $G \acts X$ by homeomorphisms of a topological space is called \emph{proper} if for all compact $K \subseteq X$, the set $\set{g \in G}{gK \cap K \neq \emptyset}$ is finite.
It is called \emph{cocompact} if there exists compact $K \subseteq X$ such that $X = G \cdot K$.
\end{definition}
\begin{definition}
A metric space $X$ is called \emph{proper} if for all $x \in X$ and for all $r \geq 0$, the closed ball $\overline{B}(x, r) := \set{y \in X}{d(x, y) \leq r}$ is compact.
\end{definition}
\begin{remark}
\label{remark:geometric_actions}
For a proper metric space $X$, an action $G \acts X$ by isometries is proper if and only if for all $x \in X$ and $r \geq 0$, the set $\set{g \in G}{d(g \cdot x, x) \leq r}$ is finite and it is cocompact if and only if for all $x \in X$ there exists $r \geq 0$ such that $X = G \cdot \overline{B}(x, r)$.
\end{remark}
\begin{lemma}
\label{lemma:geometric_action_conjugacy_classes}
Let $G \acts X$ be a proper cocompact action by isometries on a proper metric space.
Let $R \geq 0$.
Then \[
S_R = \set{g \in G}{\Exists x \in X \text{ s.t. } d(g \cdot x, x) \leq R}
\] consists of finitely many conjugacy classes.
% Note to self: next time teaching this, just introduce translation length!
% In particular, it's much nicer to say "translation length is a conjugacy invariant".
\end{lemma}
\begin{proof}
Pick some basepoint $x_0 \in X$.
By cocompactness, there exists $r_0 \geq 0$ such that $X = G \cdot \overline{B}(x_0, r_0)$.
Suppose $g \in G$ and $x \in X$ with $d(g \cdot x, x) \leq R$.
Since $X = G \cdot \overline{B}(x_0, r_0)$, there exists $h \in G$ such that $x_1 := h^{-1} \cdot x \in \overline{B}(x_0, r_0)$.
Then \[
d(g^h \cdot x_1, x_1) = d(h^{-1} g h \cdot (h^{-1} \cdot x), h^{-1} \cdot x) = d(h^{-1} g x, h^{-1} x) = d(g \cdot x, x) \leq R
\] and thus \[
d(g^h \cdot x_0, x_0) \leq d(g^h \cdot x_0, g^h \cdot x_1) + d(g^h \cdot x_1, x_1) + d(x_1, x_0) \leq 2r_0 + R
\] so by properness there are only finitely many possibilities for $g^h$.
Thus the elements of $S_R$ are contained in finitely many conjugacy classes.
Since $d(g^h \cdot (h^{-1} \cdot x), h^{-1} \cdot x) = d(g \cdot x, x)$ for all $g, h \in G$ and $x \in X$, we note that $S_R$ will be a union of conjugacy classes.
\end{proof}
\begin{definition}[4-point condition]
Let $\delta \geq 0$.
A metric space $X$ is $(\delta)$-hyperbolic if
\begin{equation}\label{equation:fourpoint}
(x \cdot y)_w \geq \min\{ (x \cdot z)_w, (y \cdot z)_w \} - \delta \tag{$\ast$}
\end{equation}
for all $w, x, y, z \in X$.
\end{definition}
\begin{remark}
This definition is arguably less intuitive, but it also works for non-geodesic metric spaces e.g.\ discrete metric spaces.
\end{remark}
\begin{proposition}
\label{proposition:comparing_deltas}
Let $X$ be a geodesic metric space.
Then
\begin{enumerate}
\item[(i)] $X$ is $(\delta)$-hyperbolic $\implies$ $X$ is $4\delta$-hyperbolic.
\item[(ii)] $X$ is $\delta$-hyperbolic $\implies$ $X$ is $(\delta)$-hyperbolic.
\end{enumerate}
\end{proposition}
\begin{proof}
(i) is left as an exercise.
Hint: Suppose that $p \in [x, y]$ and $q \in [x, z]$ with $d(x, p) = d(x, q) \leq (y \cdot z)_x$.
Prove the required inequality $d(p, q) \leq 4\delta$ by bounding $(p \cdot q)_x$ from below by first proving the general fact that, for all $a, b, c, d, w \in X$, we have \[
(a \cdot d)_w \geq \min\{(a \cdot b)_w, (b \cdot c)_w, (c \cdot d)_w\} - 2\delta.
\]
(ii) Pick $x'$ on a geodesic $[w, x]$, $y'$ on $[w, y]$ and $z'$ on $[w, z]$ such that \[
d(w, x') = d(w, y') = d(w, z') = \min\{ (x \cdot z)_w, (y \cdot z)_w \}.
\]
% TODO add figure
By $\delta$-thinness of $\Delta(w, x, z)$ we have $d(x', z') \leq \delta$ and similarly $d(z', y') \leq \delta$ so that $d(x', y') \leq 2\delta$.
Thus \[
d(x, y) \leq d(x, x') + 2\delta + d(y, y')
\] but by construction
\begin{align*}
d(x, x') &= d(w, x) - \min\{ (x \cdot z)_w, (y \cdot z)_w \} \\
d(y, y') &= d(w, y) - \min\{ (x \cdot z)_w, (y \cdot z)_w \}
\end{align*}
so that \[
d(x, y) \leq d(w, x) + d(w, y) - 2\min\{ (x \cdot z)_w, (y \cdot z)_w \} + 2 \delta
\] which says precisely that \[
(x \cdot y)_w \geq \min\{ (x \cdot z)_w, (y \cdot z)_w \} - \delta.
\]
\end{proof}
Let's repackage the 4-point condition to be symmetric: we have that
\begin{align}
\label{equation:unpackaged_fourpoint1}
(x \cdot y)_w
&\geq (x \cdot z)_w - \delta \\
\label{equation:unpackaged_fourpoint2}
\text{or} \qquad (x \cdot y)_w
&\geq (y \cdot z)_w - \delta
\end{align}
(or both).
Inequality~\eqref{equation:unpackaged_fourpoint1} says
\begin{align*}
d(w, x) + d(w, y) - d(x, y)
&\geq d(w, x) + d(w, z) - d(x, z) - 2\delta \\
\Leftrightarrow \qquad \qquad d(w, z) + d(x, y)
&\leq d(w, y) + d(x, z) + 2\delta.
\end{align*}
So similarly rewriting \eqref{equation:unpackaged_fourpoint2} and combining the two possibilities, we see that the 4-point condition \eqref{equation:fourpoint} is equivalent to \begin{equation}
\label{equation:symmetric_fourpoint}
d(w, z) + d(x, y) \leq \max \{ d(w, y) + d(x, z), d(w, x) + d(y, z) \} + 2\delta. \tag{$\diamond$}
\end{equation}
There are $3$ ways to partition $\{w, x, y, z\}$ into $2$ pairs, all of which occur in the previous equation.
Suppose $S \leq M \leq L$ are the corresponding sums of opposite edge lengths.
Then \eqref{equation:fourpoint} is equivalent (considering permutations of the $4$ points) to the assertion $L \leq M + 2\delta$.
\begin{theorem}[Delzant]
\label{theorem:delzant}
Let $X$ be a $\delta$-hyperbolic geodesic metric space (in the sense of thin triangles) and suppose that $G \acts X$ by isometries such that for all $1 \neq g \in G$ and for all $x \in X$, we have \[
d(x, g \cdot x) > 3 \delta.
\]
Then $G$ is diffuse.
\end{theorem}
\begin{proof}
We claim that for all $g \in G$, $1 \neq h \in G$ and $p \in X$ we have either \begin{align*}
d(gh \cdot p, p)
&> d(g \cdot p, p) \\
\text{or} \qquad
d(gh^{-1} \cdot p, p)
&> d(g \cdot p, p). \\
\end{align*}
Then we are done because for finite $A \subseteq G$ and any $p \in X$, an element $a \in A$ achieving $\max_{a \in A} d(a \cdot p, p)$ will be extremal.
Suppose for the sake of contradiction that
\begin{equation}
\label{equation:delzant_absurdum}
d(g \cdot p, p) \geq d(gh \cdot p, p), d(gh^{-1} \cdot p, p).
\end{equation}
Consider the symmetric 4-point condition \eqref{equation:symmetric_fourpoint} on $p, g \cdot p, gh \cdot p, gh^{-1} \cdot p$.
(Note that $X$ is assumed $\delta$-hyperbolic and is thus $(\delta)$-hyperbolic by \Cref{proposition:comparing_deltas}.)
The three possible sums are (since $G \acts X$ by isometries):
\begin{align*}
d(g \cdot p, p) + d(gh^{-1} \cdot p, gh \cdot p)
&= d(g \cdot p, p) + d(h^2 \cdot p, p) \\
d(gh \cdot p, p) + d(g \cdot p, gh^{-1} \cdot p)
&= d(gh \cdot p, p) + d(h \cdot p, p) \\
d(gh^{-1} \cdot p, p) + d(g \cdot p, gh \cdot p)
&= d(gh^{-1} \cdot p, p) + d(h \cdot p, p).
\end{align*}
If we assume $d(h^2 \cdot p, p) \geq d(h \cdot p, p)$, then together with \eqref{equation:delzant_absurdum} this implies that the first term is the largest and thus the 4-point condition says
\begin{align*}
d(g \cdot p, p) + d(h^2 \cdot p, p)
& \leq d(g h^{\pm 1} \cdot p, p) + d(h \cdot p, p) + 2\delta \\
& \leq d(g \cdot p, p) + d(h \cdot p, p) + 2\delta.
\end{align*}
So in either case, we have $d(h^2 \cdot p, p) \leq d(h \cdot p, p) + 2\delta$.
Thus \[
(h \cdot p, h^{-1} \cdot p)_p \geq \frac{1}{2} d(h \cdot p, p) - \delta.
\]
Take any geodesic $[p, h^{-1} \cdot p]$ and translate it by $h$ to get a preferred geodesic $[h \cdot p, p]$.
If we let $q$ be the midpoint of $[p, h^{-1} \cdot p]$ and then let $q', q''$ lie on $[q, p]$ respectively $[h \cdot q, p] \subset [h \cdot p, p]$ at distance $\delta$ from $q$ respectively $h \cdot q$, we have $d(q', q'') \leq \delta$ by $\delta$-thinness of $\Delta(h^{-1} \cdot p, p, h \cdot p)$.
But now \[
d(h \cdot q, q) \leq d(h \cdot q, q'') + d(q'', q') + d(q', q) \leq 3\delta,
\] a contradiction.
\end{proof}
\begin{corollary}
Let $G$ be a residually finite hyperbolic group.
Then $G$ is virtually diffuse.
\end{corollary}
\begin{remark}
It is a famous open problem whether all hyperbolic groups are residually finite.
\end{remark}
\begin{proof}
Let $G \acts X$ properly cocompactly by isometries, where $X$ is a proper geodesic $\delta$-hyperbolic metric space.
By \Cref{lemma:geometric_action_conjugacy_classes} there exist $1 = g_0, g_1, \dots, g_n \in G$ such that for all $g \in G$, if there exists $x \in X$ with $d(g \cdot x, x) \leq 3\delta$ then $g \sim g_i$ for some $i$.
By residual finiteness we can find $\phi \colon G \epi Q$, $Q$ finite, such that $\phi(g_1), \dots, \phi(g_n) \neq 1$.
Then $G_0 = \ker(\phi)$ satisfies the assumptions of Delzant's \cref{theorem:delzant}.
\end{proof}
We note one consequence of this corollary of general interest (i.e.\ beyond studying group rings).
\begin{corollary}
A residually finite hyperbolic group is virtually torsion-free.
\end{corollary}
\begin{exercise}
Verify \Cref{remark:geometric_actions} (translating between topological and metric conditions).
\end{exercise}
\section{Primality of group rings}
Our aim is to give a complete proof of the following, which was used to show that the unit conjecture for $K[G]$ implies the zero divisor conjecture for $K[G]$.
\begin{theorem}[Connell]
$K[G]$ is prime if and only if $G$ has no non-trivial finite normal subgroup.
\end{theorem}
Recall that a ring $R$ is \emph{prime} if for all $\alpha, \beta \in R \setminus \{0\}$ there exists $\gamma \in R$ such that $\alpha \gamma \beta \neq 0$ (that is, the zero ideal is a prime ideal in the sense of non-commutative ring theory).
To get there we need some group ring basics, a fair bit of group theory and an ingenious trick of Passman.
\begin{definition}
Let $H \leq G$.
Then the projection $\pi_H \colon K[G] \to K[H]$ is defined by \[
\pi_H(\sum_{g \in G} a_g g) = \sum_{g \in H} a_g g.
\]
\end{definition}
Warning: this is never a ring homomorphism for $H \lneq G$! But we do have:
\begin{lemma}
\label{lem:KH_bimodule_hom}
$\pi_H$ is a homomorphism of $(K[H], K[H])$-bimodules.
\end{lemma}
\begin{proof}
Exercise.
\end{proof}
\begin{corollary}
Let $H \leq G$.
If $\alpha \in K[H]$ is a unit in $K[G]$, then it is a unit in $K[H]$.
\end{corollary}
\begin{proof}
For $\beta \in K[G]$ with $\alpha \beta = \beta \alpha = 1$ we have \[
\alpha \pi_H(\beta) = \pi_H(\alpha \beta) = 1 = \pi_H(\beta \alpha) = \pi_H(\beta) \alpha
\] so in fact $\alpha^{-1} = \beta = \pi_H(\beta) \in K[H]$.
\end{proof}
Recall that a \emph{left transversal} for $H \leq G$ is a set $X$ containing exactly one representative $x$ of each left coset of $H$, so that $G = \sqcup_{x \in X} x H$.
\begin{lemma}
Let $X$ be a left transversal for $H$ in $G$.
Then every element $\alpha \in K[G]$ can be written uniquely as a finite sum \[
\alpha = \sum_{x \in X} x \alpha_x
\] with $\alpha_x \in K[H]$. In fact, $\alpha_x = \pi_H(x^{-1} \alpha)$.
Thus $K[G]$ is a free right $K[H]$-module with $X$ as a basis.
\end{lemma}
\begin{proof}
Exercise.
\end{proof}
Recall that $M_n(R)$ denotes the ring of $n \times n$ matrices over a ring $R$.
\begin{lemma}
\label{lemma:KG_in_MnKH}
Let $[G : H] = n < \infty$.
Then $K[G] \mono M_n(K[H])$.
\end{lemma}
\begin{proof}
Let $X = \{x_1, \dots, x_n\}$ be a left transversal for $H$ in $G$.
Then $V = K[G]$ is a free right $K[H]$-module with basis $X$.
It is also a left $K[G]$-module and since left and right multiplication commute, $K[G]$ acts by $K[H]$-linear transformations of $V \cong K[H]^n$.
Since for each $\alpha \in K[G]$ and each index $j$ we have \[
\alpha x_j = \sum_{i=1}^n x_i \pi_H(x_i^{-1} \alpha x_j),
\] sending the element $\alpha$ to the matrix \[
\eta_X(\alpha) := \left( \pi_H(x_i^{-1} \alpha x_j) \right)_{ij}
\] defines the embedding (for choice of basis $X$).
\end{proof}
\begin{remark}
If $G$ is finite and $H = 1$ then this is just the regular representation.
\end{remark}
\begin{example}
Let $D_\infty = \gp{r, t}{r^2 = 1, t^r = t^{-1}} = \Z \rtimes \Z/2$ and take $X = \{1, r\}$ as the obvious left transversal for $\gen{t} = \Z$.
Then since $r \cdot 1 = r, r \cdot r = 1 \cdot 1, t \cdot 1 = 1 \cdot t, t \cdot r = r \cdot t^{-1}$, we have $K[D_\infty] \to M_2(K[t, t^{-1}])$ given by extending \[
r \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},
\quad
t \mapsto \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}.
\]
\end{example}
The first bit of group theory is:
\begin{lemma}[Schur]
\label{lemma:schur}
If $[G : Z(G)] < \infty$ then $|G'|$ is finite.
\end{lemma}
\begin{definition}
Let $H \leq G$ with $[G : H] = n < \infty$.
Pick a left transversal $\{x_1, \dots, x_n\}$ for $H$.
For each $g \in G$ and $1 \leq j \leq n$, we have $g x_j = x_i h_j$ for some unique $h_j \in H$.
The \emph{transfer} is defined as the map $G / G' \to H / H'$ given by \[
g \mapsto h_1 \dots h_n H'.
\]
\end{definition}
\begin{lemma}
The transfer is a group homomorphism and does not depend on the choice of transversal.
\end{lemma}
\begin{proof}
Map $K[G] \to M_n(K[H])$ via \cref{lemma:KG_in_MnKH}, $M_n(K[H]) \to M_n(K[H/H'])$ by extending $K[H] \to K[H/H']$, and $M_n(K[H/H']) \to K[H/H']$ via the determinant.
For given $g \in G$ and $1 \leq j \leq n$, with $g x_j = x_i h_j \Leftrightarrow h_j = x_i^{-1} g x_j$, the $j$-th column of $\eta_X(g)$ contains $h_j$ in row $i$, otherwise zeroes.
Letting $\operatorname{sgn}(g)$ denote the sign of the permutation $g$ induces on the set $G / H$, we have that the composition $G \to K[H/H']$ so defined maps \[
g \mapsto \operatorname{sgn}(g) h_1 \dots h_n \in K[H / H']
\]
where the image is moreover a trivial unit.
The group of trivial units is $K^\times \times H / H'$ so we can project onto the second factor to obtain our map \[
G \to H / H' \colon g \mapsto h_1 \dots h_n.
\]
As the image is abelian, it factors through $G/G'$ to define the transfer.
It is independent of the choice of transversal since change of basis of $K[G]$ produces similar matrices in $M_n(K[H])$, whose images in $M_n(K[H/H'])$ will have the same determinant.
\end{proof}
\begin{proof}[Proof of Schur's lemma]
Let $Z = Z(G)$.
Consider the transfer map $G / G' \to Z / Z' = Z$.
By centrality of $Z$, for $g \in Z$ this is simply $g \mapsto g^n$ (in fact, one can show this for all $g \in G$).
Thus $g \in G' \cap Z$ implies $g^n = 1$.
If $x_1, \dots, x_n$ is a transversal, then every commutator is of the form $[x_i z_1, x_j z_2] = [x_i, x_j]$ (for some $z_1, z_2 \in Z$) and thus $G'$ is finitely generated.
Now $[G' : G' \cap Z] \leq n$ so $G' \cap Z$ is finitely generated, finite exponent and abelian, thus finite.
Thus $G'$ is finite.
\end{proof}
\begin{definition}
The \emph{FC-centre} of a group $G$ is \[
\Delta(G) = \{ g \in G : |g^G| < \infty \},
\] the set of elements whose conjugacy class is finite.
\end{definition}
This is alternatively the set of elements $g$ whose centralizer $C_G(g)$ is finite index (by orbit-stabilizer theorem for $G \curvearrowright G$).
As $C_G(gh) \geq C_G(g) \cap C_G(h)$ and $[G : C_G(g) \cap C_G(h)] \leq [G : C_G(g)] [G : C_G(h)]$ for all $g, h \in G$, we see that $\Delta(G)$ is a (characteristic) subgroup of $G$.
We call $G$ an \emph{FC-group} if $G = \Delta(G)$.
Note that $\Delta(\Delta(G)) = \Delta(G)$, i.e. the FC-centre is an FC-group.
\begin{lemma}
\label{lemma:fc_is_locally_finite_by_free_abelian}
An FC-group is locally finite-by-(free abelian).
\end{lemma}
\begin{proof}
Let $H = \langle h_1, \dots, h_n \rangle \leq G$.
Then $C_G(H) = \cap_{i=1}^n C_G(h_i)$ is finite index in $G$ and thus $Z(H) = C_G(H) \cap H$ is finite index in $H$.
Thus Schur's lemma implies that $H'$ is finite.
Now $H / H'$ is a finitely generated abelian group so it has the form $T \oplus \mathbb{Z}^d$ where $T$ is finite.
Thus the kernel of the composition $H \to \mathbb{Z}^d$ is finite.
\end{proof}
\begin{remark}
The torsion elements of an abelian group form a characteristic subgroup, so any group (finitely generated or not) has a well-defined torsion-free abelianization.
\end{remark}
\begin{corollary}
A torsion-free virtually cyclic is cyclic.
\end{corollary}
\begin{proof}
Let $G$ be torsion-free and virtually cyclic with $G_0 = \gen{t}$ a finite index subgroup.
(If $G_0$ is finite, then $G$ is finite and thus trivial.)
We claim that $G$ is an FC-group.
For any $1 \neq g \in G$ there exists $n \geq 1$ such that $g^n \in G_0$, i.e. $g^n = t^m$ for some $m \in \Z$.
By torsion-freeness $m \neq 0$ and thus $C_G(g)$ contains $\gen{t^m}$ which is finite index in $G_0$ and thus in $G$.
A virtually finitely generated group is finitely generated so \cref{lemma:fc_is_locally_finite_by_free_abelian} applies.
Now we are done by the classification of finitely generated abelian groups.
\end{proof}
\begin{remark}
A torsion-free virtually abelian group need not be abelian, e.g.\ the fundamental group $\Z \rtimes \Z$ of the Klein bottle.
\end{remark}
We now have the tools to prove the following result on the torsion of $\Delta(G)$, \[
\Delta^+(G) := \{g \in \Delta(G) : \operatorname{ord}(g) < \infty \}.
\]
\begin{lemma}[B.H. Neumann]
\label{lemma:neumann_fc}
$\Delta^+(G)$ is a characteristic subgroup of $G$ and $\Delta(G) / \Delta^+(G)$ is torsion-free abelian.
\end{lemma}
\begin{proof}
If $g, h \in \Delta^+(G)$ then the generators of $H = \langle g, h \rangle$ are both in the kernel of its torsion-free abelianization, so $H$ is finite.
Thus $\Delta^+(G)$ is a subgroup, which is clearly characteristic.
Since $\Delta^+(G)$ contains \emph{precisely} the torsion elements of $\Delta(G)$, the quotient $\Delta(G) / \Delta^+(G)$ is torsion-free.
For any $H = \langle g, h \rangle \leq \Delta(G)$, we have that $H'$ is finite by \cref{lemma:fc_is_locally_finite_by_free_abelian} and thus $H' \leq \Delta^+(G)$, so $\Delta(G) / \Delta^+(G)$ is abelian.
\end{proof}
\begin{lemma}
\label{lemma:ncls_finite_delta}
If $x_1, \dots, x_n \in \Delta^+(G)$ then the normal closure $N = \ncls{x_1, \dots, x_n}_G$ is finite.
\end{lemma}
\begin{proof}
$N$ is generated by the finitely many conjugates in $G$ of the $x_i$, which are all in the kernel of the torsion-free abelianization of $N$, so we are done by \cref{lemma:fc_is_locally_finite_by_free_abelian}.
\end{proof}
\begin{lemma}[B.H. Neumann]
\label{lemma:neumann_cosets}
Let $G$ be a group and $H_1, \dots, H_n \leq G$.
Suppose there exist finitely many (left) cosets $g_{ij} H_i$ such that \[
G = \bigcup_{i,j} g_{ij} H_i.
\]
Then some $[G : H_i] < \infty$.
\end{lemma}
\begin{proof}
We proceed by induction on $n$.
The base case $n=1$ is clear.
Suppose $n \geq 2$.
If all (left) cosets of $H_n$ occur, then $[G : H_n] < \infty$.
If not, then let $g H_n$ be such that $g H_n \neq g_{nj} H_n$ for all $j$, which gives $g H_n \cap g_{nj} H_n = \emptyset$ for all $j$.
Thus \[
g H_n \subseteq \bigcup_{i \leq n-1, k} g_{ik} H_i.
\]
Now replace each $g_{nj} H_n$ with $\set{g_{nj} g^{-1} g_{ik} H_i}{i \leq n-1}$ to write $G$ as a finite union of cosets of $H_1, \dots, H_{n-1}$.
\end{proof}
This result is similarly true for right cosets.
The final ingredient is:
\begin{theorem}[Passman]
Suppose that $\alpha, \beta \in K[G]$ such that $\alpha \gamma \beta = 0$ for all $\gamma \in K[G]$.
Then $\pi_{\Delta(G)}(\alpha) \pi_{\Delta(G)}(\beta) = 0$.
\end{theorem}
\begin{proof}[Proof of Connell's Theorem]
If $H \normal G$ is finite then let $\alpha = \sum_{h \in H} h \in K[G]$.
Note that $\alpha \in Z(K[G])$ and $\alpha^2 = |H| \alpha$.
Thus $\alpha \gamma (\alpha - |H|) = 0$ for all $\gamma \in K[G]$, so $K[G]$ is not prime.
If $G$ has no non-trivial finite normal subgroup, then by \cref{lemma:ncls_finite_delta} we have $\Delta^+(G) = 1$ and thus by Neumann's \cref{lemma:neumann_fc} $\Delta(G)$ is torsion-free abelian.
Suppose that $0 \neq \alpha, \beta \in K[G]$ with $\alpha \gamma \beta = 0$ for all $\gamma \in K[G]$.
By choosing some $g \in \supp(\alpha), h \in \supp(\beta)$ and replacing $\alpha$ with $g^{-1} \alpha$ and $\beta$ with $\beta h^{-1}$, we can assume without loss of generality that $1 \in \supp(\alpha)$ and $1 \in \supp(\beta)$.
Thus $\pi_{\Delta(G)}(\alpha), \pi_{\Delta(G)}(\beta) \neq 0$ but by Passman's theorem their product is zero.
This is impossible as $\Delta(G)$ is torsion-free abelian so $K[\Delta(G)]$ satisfies the zero divisor conjecture.
\end{proof}
\begin{proof}[Proof of Passman's Theorem]
Let $\Delta = \Delta(G)$.
It suffices to prove that $\pi_\Delta(\alpha) \beta = 0$ since then \[
0 = \pi_\Delta\left( \pi_\Delta(\alpha) \beta \right) = \pi_\Delta(\alpha) \pi_\Delta(\beta)
\] (as $\pi_\Delta$ is a homomorphism of $K[\Delta]$-bimodules, \cref{lem:KH_bimodule_hom}).
Write $\alpha = \alpha_0 + \alpha_1$ where $\alpha_0 = \pi_\Delta(\alpha)$.
Suppose for the sake of contradiction that $\alpha_0 \beta \neq 0$ and fix some $g_0 \in \supp(\alpha_0 \beta)$.
The assumption on $\alpha$ and $\beta$ is equivalent to saying \[
x^{-1} (\alpha_0 + \alpha_1) x \beta = 0
\] for all $x \in G$.
If $x \in C_G(\supp(\alpha_0))$ then this simplifies to \[
x^{-1} \alpha_1 x \beta = - \alpha_0 \beta
\] so that $g_0 \in \supp(x^{-1} \alpha_1 x \beta)$.
Let
\begin{align*}
\supp(\alpha_1) &= \{ v_1, \dots, v_m \} \\
\supp(\beta) &= \{ w_1, \dots, w_n \}
\end{align*}
So if $x \in C_G(\supp(\alpha_0))$ there exist $1 \leq i \leq m, 1 \leq j \leq n$ such that \[
x^{-1} v_i x w_j = g_0.
\]
If $g_{ij}$ is some solution in $x$ to $v_i^x = g_0 w_j^{-1}$, then the set of solutions is precisely the coset $C_G(v_i) g_{ij}$.
Now the definition of $\Delta$ guarantees that \[
C := C_G(\supp(\alpha_0)) = \bigcap_{g \in \supp(\alpha_0)} C_G(g)
\] is finite index in $G$ whereas for $v_i \in \supp(\alpha_1)$ we have $[G : C_G(v_i)] = \infty$ which implies $[C : C \cap C_G(v_i)] = \infty$ too.
If every $x \in C$ lies in some $C_G(v_i) g_{ij}$, then $C$ can be written as a finite union of cosets of infinite index subgroups, contradicting Neumann's \cref{lemma:neumann_cosets}.
\end{proof}
\begin{exercise}
Let \[
T(G) = \set{g \in G}{\operatorname{ord}(g) < \infty}
\] denote the set of torsion of the group $G$.
\begin{enumerate}
\item Show that if $G / N$ is torsion-free then $T(G) \subseteq N$.
\item Show that if $T(G)$ is a subgroup of $G$, then $G / T(G)$ is torsion-free.
\item Show that if $T(G)$ is finite, then it is indeed a subgroup. (Hint: consider the FC-centre $\Delta(G)$.)
\end{enumerate}
% Would be nice to have an easy example where $G / \ncls(T(G))$ is not torsion-free, but all I can think of is adjoining a root to the infinite dihedral group, and this surely needs Bass--Serre theory.
% Actually: with enough theory of polycyclic groups we should be fine, since adjoining a square root in $D_\infty$ is polycyclic.
% Introducing the theory of torsion-length (e.g. Chiodo) is surely too much at this point.
\end{exercise}
\begin{exercise}
Suppose that $g, h, x_0 \in G$ satisfy $g^{x_0} = h$.
Show that \[
\set{x \in G}{g^x = h} = C_G(g) x_0.
\]
\end{exercise}
\begin{exercise}
Let $[G : G_0] < \infty$.
Prove or disprove: If $G_0$ is an FC-group, then $G$ is an FC-group.
\end{exercise}
\begin{exercise}
Consider the group ring $\F_2[\Z/3]$.
\begin{enumerate}
\item Does is contain zero-divisors?
\item Does is contain non-trivial units?
\item Does this contradict anything we proved?
\end{enumerate}
\end{exercise}
\section{Traces}
(This section of the lectures follows \cite[Chapter 2]{Passman} very closely.)
Suppose $\abs{G} = n < \infty$.
Then $V = K[G]$ gives a finite dimensional representation of $G$, namely the regular representation.
Fix as a basis $G$ which gives $\rho \colon K[G] \to M_n(K)$.
As $G \acts G$ freely, we know that each $\rho(g)$ for $g \neq 1$ is a permutation matrix with zeroes on the diagonal, and of course $\rho(1) = I_n$.