@@ -2752,13 +2752,15 @@ def set_vocab(self):
2752
2752
2753
2753
text = piece .encode ("utf-8" )
2754
2754
score = 0.0
2755
- if len (piece ) != 0 and token_id < 64789 :
2755
+ # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
2756
+ # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
2757
+ if len (piece ) != 0 and token_id < tokenizer .tokenizer .sp_model .vocab_size ():
2756
2758
score = tokenizer .tokenizer .sp_model .get_score (token_id )
2757
2759
2758
2760
if len (piece ) == 0 :
2759
2761
text = f"[PAD{ token_id } ]" .encode ("utf-8" )
2760
2762
2761
- if token_id >= 64789 :
2763
+ if token_id >= tokenizer . tokenizer . sp_model . vocab_size () :
2762
2764
toktype = SentencePieceTokenTypes .UNKNOWN
2763
2765
tokens .append (text )
2764
2766
scores .append (score )
@@ -2788,7 +2790,7 @@ def set_vocab(self):
2788
2790
special_vocab .add_to_gguf (self .gguf_writer )
2789
2791
2790
2792
def set_gguf_parameters (self ):
2791
- self .gguf_writer .add_name ("ChatGLM-6b-chat" )
2793
+ self .gguf_writer .add_name (self . dir_model . name )
2792
2794
n_embed = self .hparams .get ("hidden_size" , self .hparams .get ("n_embed" ))
2793
2795
n_head = self .hparams .get ("n_head" , self .hparams .get ("num_attention_heads" ))
2794
2796
n_head_kv = self .hparams .get ("multi_query_group_num" , n_head )
@@ -2804,16 +2806,12 @@ def set_gguf_parameters(self):
2804
2806
self .gguf_writer .add_add_bos_token (False )
2805
2807
2806
2808
def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
2807
- if name .endswith (".rotary_pos_emb.inv_freq" ):
2808
- return []
2809
-
2810
2809
del bid # unused
2811
2810
2812
- name = re .sub (r'transformer\.' , '' , name )
2813
-
2814
- if name == "word_embeddings.weight" :
2815
- assert self .tensor_names is not None
2811
+ if name .endswith (".rotary_pos_emb.inv_freq" ):
2812
+ return []
2816
2813
2814
+ name = name .removeprefix ("transformer." )
2817
2815
return [(self .map_tensor_name (name ), data_torch )]
2818
2816
2819
2817
0 commit comments