diff --git a/.circleci/config.yml b/.circleci/config.yml index 50c966fb3d..af2c5ea078 100644 --- a/.circleci/config.yml +++ b/.circleci/config.yml @@ -480,7 +480,7 @@ jobs: - checkout - run: name: Install EvaDB package from GitHub repo and run tests - no_output_timeout: 40m # 40 minute timeout + no_output_timeout: 30m # 30 minute timeout command: | python -m venv test_evadb source test_evadb/bin/activate diff --git a/evadb/executor/create_function_executor.py b/evadb/executor/create_function_executor.py index 773e0b94bc..9488195927 100644 --- a/evadb/executor/create_function_executor.py +++ b/evadb/executor/create_function_executor.py @@ -423,7 +423,6 @@ def handle_forecasting_function(self): AutoNHITS, AutoPatchTST, AutoTFT, - AutoTimesNet, ) # from neuralforecast.auto import AutoAutoformer as AutoAFormer @@ -436,7 +435,6 @@ def handle_forecasting_function(self): FEDformer, Informer, PatchTST, - TimesNet, ) # from neuralforecast.models import Autoformer as AFormer @@ -456,8 +454,6 @@ def handle_forecasting_function(self): # "AutoAFormer": AutoAFormer, "Informer": Informer, "AutoInformer": AutoInformer, - "TimesNet": TimesNet, - "AutoTimesNet": AutoTimesNet, "TFT": TFT, "AutoTFT": AutoTFT, } @@ -546,7 +542,7 @@ def get_optuna_config(trial): raise FunctionIODefinitionError(err_msg) model = StatsForecast( - [model_here(season_length=season_length)], freq=new_freq, n_jobs=-1 + [model_here(season_length=season_length)], freq=new_freq ) data["ds"] = pd.to_datetime(data["ds"]) diff --git a/test/integration_tests/long/test_model_forecasting.py b/test/integration_tests/long/test_model_forecasting.py index 76e5562357..d2f645ad7e 100644 --- a/test/integration_tests/long/test_model_forecasting.py +++ b/test/integration_tests/long/test_model_forecasting.py @@ -80,55 +80,55 @@ def tearDownClass(cls): @forecast_skip_marker def test_forecast(self): create_predict_udf = """ - CREATE FUNCTION AirForecast FROM - (SELECT unique_id, ds, y FROM AirData) + CREATE FUNCTION AirPanelForecast FROM + (SELECT unique_id, ds, y, trend FROM AirDataPanel) TYPE Forecasting HORIZON 12 - PREDICT 'y'; + PREDICT 'y' + LIBRARY 'neuralforecast' + AUTO 'false' + FREQUENCY 'M'; """ execute_query_fetch_all(self.evadb, create_predict_udf) predict_query = """ - SELECT AirForecast() order by y; + SELECT AirPanelForecast() order by y; """ result = execute_query_fetch_all(self.evadb, predict_query) - self.assertEqual(len(result), 12) + self.assertEqual(len(result), 24) self.assertEqual( result.columns, [ - "airforecast.unique_id", - "airforecast.ds", - "airforecast.y", - "airforecast.y-lo", - "airforecast.y-hi", + "airpanelforecast.unique_id", + "airpanelforecast.ds", + "airpanelforecast.y", + "airpanelforecast.y-lo", + "airpanelforecast.y-hi", ], ) create_predict_udf = """ - CREATE FUNCTION AirPanelForecast FROM - (SELECT unique_id, ds, y, trend FROM AirDataPanel) + CREATE FUNCTION AirForecast FROM + (SELECT unique_id, ds, y FROM AirData) TYPE Forecasting HORIZON 12 - PREDICT 'y' - LIBRARY 'neuralforecast' - AUTO 'false' - FREQUENCY 'M'; + PREDICT 'y'; """ execute_query_fetch_all(self.evadb, create_predict_udf) predict_query = """ - SELECT AirPanelForecast() order by y; + SELECT AirForecast() order by y; """ result = execute_query_fetch_all(self.evadb, predict_query) - self.assertEqual(len(result), 24) + self.assertEqual(len(result), 12) self.assertEqual( result.columns, [ - "airpanelforecast.unique_id", - "airpanelforecast.ds", - "airpanelforecast.y", - "airpanelforecast.y-lo", - "airpanelforecast.y-hi", + "airforecast.unique_id", + "airforecast.ds", + "airforecast.y", + "airforecast.y-lo", + "airforecast.y-hi", ], )