-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathadd_predictive.sas
359 lines (320 loc) · 12.4 KB
/
add_predictive.sas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
%macro add_predictive(data=, y=, p_old=, p_new= , nripoints=%str(),hoslemgrp=10) ;
/*---
this macro attempts to quantify the added predictive ability of a covariate(s)
in logistic regression based off of the statistics in: M. J. Pencina ET AL. Statistics
in Medicine (2008 27(2):157-72). Statistics returned with be: C-statistics (for 9.2 users),
IDI (INTEGRATED DISCRIMINATION IMPROVEMENT), NRI (net reclassification index)
for both Category-Free and User defined groups, and Hosmer Lemeshow GOF test
with associated pvalues and z scores.
Parameters (* = required)
-------------------------
data* Specifies the SAS dataset
y* Response variable (Outcome must be 0/1)
p_old* Predicted Probability of an Event using Initial Model
p_new* Predicted Probability of an Event using New Model
nripoints Groups for User defined classification (Optional),
Example 3 groups: (<.06, .06-.2, >.2) then nripoints=.06 .2
hoslemgrp # of groups for the Hosmer Lemeshow test (default 10)
Author: Kevin Kennedy and Michael Pencina
Date: May 26, 2010
---*/
options nonotes nodate nonumber;
ods select none;
%local start end ;
%let start=%sysfunc(datetime());
proc format;
value pval 0-.0001='<.0001';
run;
/******Step 1: C-Statistics******/
/********************************/
%if %sysevalf(&sysver >= 9.2) %then %do;
%put ********Running AUC Analysis************;
proc logistic data=&data descending;
model &y=&p_old &p_new;
roc 'first' &p_old;
roc 'second' &p_new;
roccontrast reference('first')/estimate e;
ods output ROCAssociation=rocass ROCContrastEstimate=rocdiff;
run;
proc sql noprint;
select estimate, StdErr, lowercl, uppercl, (ProbChiSq*100) as pval
into :rocdiff, :rocdiff_stderr, :rocdiff_low, :rocdiff_up, :rocp
from rocdiff
where find(contrast,'second');
quit;
data _null_;
set rocass;
if ROCModel='first' then do;
call symputx('c_old',Area);
end;
if ROCModel='second' then do;
call symputx('c_new',Area);
end;
run;
data cstat;
cstat_old=&c_old; label cstat_old='Model1 AUC';
cstat_new=&c_new; label cstat_new='Model2 AUC';
cstat_diff=&rocdiff; label cstat_diff='Difference in AUC';
cstat_stderr=&rocdiff_stderr; label cstat_stderr='Standard Error of Difference in AUC';
cstat_low=&rocdiff_low; label cstat_low='Difference in AUC Lower 95% CI';
cstat_up=&rocdiff_up; label cstat_up='Difference in ACU Upper 95% CI';
cstat_ci='('!!trim(left(cstat_low))!!','!!trim(left(cstat_up))!!')';
label cstat_ci='95% CI for Difference in AUC';
cstat_pval=&rocp/100; label cstat_pval='P-value for AUC Difference';
format cstat_pval pval.;
run;
%end;
%if %sysevalf(&sysver < 9.2) %then %do;
options notes ;
%put *********************;
%put NOTE: You are running a Pre 9.2 version of SAS;
%put NOTE: Go to SAS website to get example of ROC Macro for AUC Comps;
%put NOTE: http://support.sas.com/kb/25/017.html;
%put *********************;
%put;
options nonotes ;
%end;
/******************************/
/*****End step 1***************/
/******************************/
/******Step 2: IDI***************/
%put ********Running IDI Analysis************;
proc sql noprint;
create table idinri as
select &y,&p_old, &p_new, (&p_new-&p_old) as pdiff
from &data
where &p_old^=. and &p_new^=.
order by &y;
quit;
proc sql noprint; /*define mean probabilities for old and new model and event and nonevent*/
select count(*),avg(&p_old), avg(&p_new),stderr(pdiff) into
:num_event, :p_event_old, :p_event_new,:eventstderr
from idinri
where &y=1 ;
select count(*),avg(&p_old), avg(&p_new),stderr(pdiff) into
:num_nonevent, :p_nonevent_old, :p_nonevent_new ,:noneventstderr
from idinri
where &y=0;
quit;
data fin(drop=slope_noadd slope_add);
pen=&p_event_new; label pen='Mean Probability for Events: Model2';
peo=&p_event_old; label peo='Mean Probability for Events: Model1';
pnen=&p_nonevent_new; label pnen='Mean Probability for NonEvents: Model2';
pneo=&p_nonevent_old; label pneo='Mean Probability for NonEvents: Model1';
idi=(&p_event_new-&p_nonevent_new)-(&p_event_old-&p_nonevent_old);
label idi='Integrated Discrimination Improvement';
idi_stderr=sqrt((&eventstderr**2)+(&noneventstderr**2));
label idi_stderr='IDI Standard Error';
idi_lowci=round(idi-1.96*idi_stderr,.0001);
idi_upci=round(idi+1.96*idi_stderr,.0001);
idi_ci='('!!trim(left(idi_lowci))!!','!!trim(left(idi_upci))!!')';
label idi_ci='IDI 95% CI';
z_idi=abs(idi/(sqrt((&eventstderr**2)+(&noneventstderr**2))));
label z_idi='Z-value for IDI';
pvalue_idi=2*(1-PROBNORM(abs(z_idi))); label pvalue_idi='P-value for IDI';
change_event=&p_event_new-&p_event_old;
label change_event='Probability change for Events';
change_nonevent=&p_nonevent_new-&p_nonevent_old;
label change_nonevent='Probability change for Nonevents';
slope_noadd=&p_event_old-&p_nonevent_old;
slope_add=&p_event_new-&p_nonevent_new;
relative_idi=slope_add/slope_noadd-1; label relative_idi='Relative IDI';
format pvalue_idi pval.;
run;
/************step 3 NRI analysis*******/
%put ********Running NRI Analysis************;
data nri_inf;
set idinri;
if &y=1 then do;
down_event=(pdiff<0);up_event=(pdiff>0);down_nonevent=0;up_nonevent=0;
end;
if &y=0 then do;
down_nonevent=(pdiff<0);up_nonevent=(pdiff>0);down_event=0;up_event=0;
end;
run;
proc sql;
select sum(up_nonevent), sum(down_nonevent), sum(up_event),sum(down_event)
into :num_nonevent_up_user, :num_nonevent_down_user, :num_event_up_user, :num_event_down_user
from nri_inf
quit;
/* Category-Free Groups */
data nri1;
group="Category-Free NRI";
p_up_event=&num_event_up_user/&num_event;
p_down_event=&num_event_down_user/&num_event;
p_up_nonevent=&num_nonevent_up_user/&num_nonevent;
p_down_nonevent=&num_nonevent_down_user/&num_nonevent;
nri=(p_up_event-p_down_event)-(p_up_nonevent-p_down_nonevent);
nri_stderr=sqrt(((&num_event_up_user+&num_event_down_user)/&num_event**2-(&num_event_up_user-
&num_event_down_user)**2/&num_event**3)+
((&num_nonevent_down_user+&num_nonevent_up_user)/&num_nonevent**2-
(&num_nonevent_down_user-&num_nonevent_up_user)**2/&num_nonevent**3));
low_nrici=round(nri-1.96*nri_stderr,.0001);
up_nrici=round(nri+1.96*nri_stderr,.0001);
nri_ci='('!!trim(left(low_nrici))!!','!!trim(left(up_nrici))!!')';
z_nri=nri/sqrt(((p_up_event+p_down_event)/&num_event)
+((p_up_nonevent+p_down_nonevent)/&num_nonevent)) ;
pvalue_nri=2*(1-PROBNORM(abs(z_nri)));
event_correct_reclass=p_up_event-p_down_event;
nonevent_correct_reclass=p_down_nonevent-p_up_nonevent;
z_event=event_correct_reclass/sqrt((p_up_event+p_down_event)/&num_event);
pvalue_event=2*(1-probnorm(abs(z_event)));
z_nonevent=nonevent_correct_reclass/sqrt((p_up_nonevent+p_down_nonevent)/&num_nonevent);
pvalue_nonevent=2*(1-probnorm(abs(z_nonevent)));
format pvalue_nri pvalue_event pvalue_nonevent pval. event_correct_reclass
nonevent_correct_reclass percent.;
label nri='Net Reclassification Improvement'
nri_stderr='NRI Standard Error'
low_nrici='NRI lower 95% CI'
up_nrici='NRI upper 95% CI'
nri_ci='NRI 95% CI'
z_nri='Z-Value for NRI'
pvalue_nri='NRI P-Value'
pvalue_event='Event P-Value'
pvalue_nonevent='Non-Event P-Value'
event_correct_reclass='% of Events correctly reclassified'
nonevent_correct_reclass='% of Nonevents correctly reclassified';
run;
/*User Defined NRI*/
%if &nripoints^=%str() %then %do;
/*words macro*/
%macro words(list,delim=%str( ));
%local count;
%let count=0;
%do %while(%qscan(%bquote(&list),&count+1,%str(&delim)) ne %str());
%let count=%eval(&count+1);
%end;
&count
%mend words;
%let numgroups=%eval(%words(&nripoints)+1); /*figure out how many ordinal groups*/
proc format ;
value group
1 = "0 to %scan(&nripoints,1,%str( ))"
%do i=2 %to %eval(&numgroups-1);
%let j=%eval(&i-1);
&i="%scan(&nripoints,&j,%str( )) to %scan(&nripoints,&i,%str( ))"
%end;
%let j=%eval(&numgroups-1);
&numgroups="%scan(&nripoints,&j,%str( )) to 1";
run;
data idinri;
set idinri;
/*define first ordinal group for pre and post*/
if 0<=&p_old<=%scan(&nripoints,1,%str( )) then group_pre=1;
if 0<=&p_new<=%scan(&nripoints,1,%str( )) then group_post=1;
%let i=1;
%do %until(&i>%eval(&numgroups-1));
if %scan(&nripoints,&i,%str( ))<&p_old then do;
group_pre=&i+1;
end;
if %scan(&nripoints,&i,%str( ))<&p_new then do;
group_post=&i+1;
end;
%let i=%eval(&i+1);
%end;
if &y=0 then do;
up_nonevent=(group_post>group_pre);
down_nonevent=(group_post<group_pre);
down_event=0; up_event=0;
end;
if &y=1 then do;
up_event=(group_post>group_pre);
down_event=(group_post<group_pre);
down_nonevent=0; up_nonevent=0;
end;
format group_pre group_post group.;
run;
proc sql;
select sum(up_nonevent), sum(down_nonevent), sum(up_event),sum(down_event),avg(&y)
into :num_nonevent_up_user, :num_nonevent_down_user, :num_event_up_user,
:num_event_down_user, :eventrate
from idinri ;
quit;
data nri2;
group='User Category NRI';
p_up_event=&num_event_up_user/&num_event;
p_down_event=&num_event_down_user/&num_event;
p_up_nonevent=&num_nonevent_up_user/&num_nonevent;
p_down_nonevent=&num_nonevent_down_user/&num_nonevent;
nri=(p_up_event-p_down_event)-(p_up_nonevent-p_down_nonevent);
nri_stderr=sqrt(((&num_event_up_user+&num_event_down_user)/&num_event**2-
(&num_event_up_user-&num_event_down_user)**2/&num_event**3)+
((&num_nonevent_down_user+&num_nonevent_up_user)/&num_nonevent**2-
(&num_nonevent_down_user-&num_nonevent_up_user)**2/&num_nonevent**3));
low_nrici=round(nri-1.96*nri_stderr,.0001);
up_nrici=round(nri+1.96*nri_stderr,.0001);
nri_ci='('!!trim(left(low_nrici))!!','!!trim(left(up_nrici))!!')';
z_nri=nri/sqrt(((p_up_event+p_down_event)/&num_event)
+((p_up_nonevent+p_down_nonevent)/&num_nonevent)) ;
pvalue_nri=2*(1-PROBNORM(abs(z_nri)));
event_correct_reclass=p_up_event-p_down_event;
nonevent_correct_reclass=p_down_nonevent-p_up_nonevent;
z_event=event_correct_reclass/sqrt((p_up_event+p_down_event)/&num_event);
pvalue_event=2*(1-probnorm(abs(z_event)));
z_nonevent=nonevent_correct_reclass/sqrt((p_up_nonevent+p_down_nonevent)/&num_nonevent);
pvalue_nonevent=2*(1-probnorm(abs(z_nonevent)));
format pvalue_nri pval.;
run;
data nri1;
set nri1 nri2;
run;
%end;
/**************/
/*step 4 gof */
/**************/
%hoslem(data=idinri,pred=&p_old,y=&y,ngro=&hoslemgrp,out=m1,print=F);
%hoslem(data=idinri,pred=&p_new,y=&y,ngro=&hoslemgrp,out=m2,print=F);
data hoslem(drop=cnt);
retain model;
set m1 m2;
cnt+1;
if cnt=1 then model='Model1';
else model='Model2';
run;
ods select all;
/*output for cstat*/
%if %sysevalf(&sysver >= 9.2) %then %do;
proc print data=cstat label noobs;
title1 "Evaluating added predictive ability of model2";
title2 'AUC Analysis';run;
%END;
/*output for IDI*/
proc print data=fin label noobs;
title1 "Evaluating added predictive ability of model2";
title2 'IDI Analysis';
var idi idi_stderr z_idi pvalue_idi idi_ci
pen peo pnen pneo change_event change_nonevent relative_idi;
run;
/*output for NRI*/
proc print data=nri1 label noobs;
title1 "Evaluating added predictive ability of model2";
title2 'NRI Analysis';
var group nri nri_stderr z_nri pvalue_nri nri_ci event_correct_reclass pvalue_event
nonevent_correct_reclass pvalue_nonevent;
run;
%if &nripoints^=%str() %then %do;
proc freq data=idinri;
where &y=0;
title 'NRI Table for Non-Events';
tables group_pre*group_post/nopercent nocol;
run;
proc freq data=idinri;
where &y=1;
title 'NRI Table for Events';
tables group_pre*group_post/nopercent nocol;
run;
%end;
/*print HL gof*/
proc print data=hoslem noobs label;
title "Hosmer Lemeshow Test with %sysevalf(&hoslemgrp-2) df";
run;
/* proc datasets library=work nolist; */
/* delete fin idinri nri1 nri2 nri_inf stderr; */
/* quit; */
options notes;
%put NOTE: Macro %nrstr(%%)add_predictive completed.;
%let end=%sysfunc(datetime());
%let runtime=%sysfunc(round(%sysevalf(&end-&start)));
%put NOTE: Macro Real Run Time=&runtime seconds;
title;
%mend add_predictive;