-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path053. Maximum Subarray.java
116 lines (97 loc) · 2.88 KB
/
053. Maximum Subarray.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
//
// Time limit exceeded version
public class Solution {
public int check(int[] nums, int divider) {
int lSum = 0, rSum = 0;
for (int i = 0; i < divider; i++) {
lSum += nums[i];
}
for (int i = divider; i < nums.length; i++) {
rSum += nums[i];
}
if (divider == 0) {
return rSum;
} else {
return Math.max(lSum, rSum);
}
}
public int helper(int[] nums) {
int max = check(nums, 0);
for (int div = 1; div <= nums.length - 1; div++) {
int val = Math.max(check(nums, div),
Math.max(helper(Arrays.copyOfRange(nums, 0, div)),
helper(Arrays.copyOfRange(nums, div, nums.length))));
if (val >= max) {
max = val;
}
}
return max;
}
public int maxSubArray(int[] nums) {
if (nums.length == 0) {
return 0;
} else if (nums.length == 1) {
return nums[0];
} else {
return helper(nums);
}
}
}
// improvement, still failed
public class Solution {
public int sum(int[] nums) {
int sum = 0;
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
}
return sum;
}
public int helper(int[] nums) {
int max = sum(nums);
for (int div = 1; div <= nums.length - 1; div++) {
int val = Math.max(helper(Arrays.copyOfRange(nums, 0, div)),
helper(Arrays.copyOfRange(nums, div, nums.length)));
if (val >= max) {
max = val;
}
}
return max;
}
public int maxSubArray(int[] nums) {
if (nums.length == 0) {
return 0;
} else if (nums.length == 1) {
return nums[0];
} else {
return helper(nums);
}
}
}
// Dynamic Programming approach
public class Solution {
public int maxSubArray(int[] nums) {
if (nums.length == 0) return Integer.MIN_VALUE;
else {
int maxSoFar = nums[0], maxEndingHere = nums[0];
for (int i=1; i < nums.length; i++){
maxEndingHere = Math.max(maxEndingHere + nums[i], nums[i]);
maxSoFar = Math.max(maxSoFar, maxEndingHere);
}
return maxSoFar;
}
}
}
// another formulation
public class Solution {
public int maxSubArray(int[] A) {
//dp[i] means the maximum subarray ending with A[i];
int[] dp = new int[n];
dp[0] = A[0];
int max = dp[0];
for(int i = 1; i < A.length; i++){
dp[i] = (dp[i - 1] > 0 ? dp[i - 1] : 0) + A[i];
max = Math.max(max, dp[i]);
}
return max;
}
}