|
| 1 | +#encoding=utf8 |
| 2 | + |
| 3 | +import os |
| 4 | +import numpy as np |
| 5 | +import FukuML.Utility as utility |
| 6 | +import FukuML.MLBase as ml |
| 7 | +import FukuML.DecisionStump as decision_stump |
| 8 | + |
| 9 | + |
| 10 | +class BinaryClassifier(ml.Learner): |
| 11 | + |
| 12 | + def __init__(self): |
| 13 | + |
| 14 | + """init""" |
| 15 | + |
| 16 | + self.status = 'empty' |
| 17 | + self.train_X = [] |
| 18 | + self.train_Y = [] |
| 19 | + self.W = [] |
| 20 | + self.data_num = 0 |
| 21 | + self.data_demension = 0 |
| 22 | + self.test_X = [] |
| 23 | + self.test_Y = [] |
| 24 | + self.feature_transform_mode = '' |
| 25 | + self.feature_transform_degree = 1 |
| 26 | + |
| 27 | + self.run_t = 40 |
| 28 | + self.weak_learner = [] |
| 29 | + self.alpha = [] |
| 30 | + self.temp_train_X = [] |
| 31 | + |
| 32 | + def load_train_data(self, input_data_file=''): |
| 33 | + |
| 34 | + self.status = 'load_train_data' |
| 35 | + |
| 36 | + if (input_data_file == ''): |
| 37 | + input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/decision_stump_train.dat")) |
| 38 | + else: |
| 39 | + if (os.path.isfile(input_data_file) is not True): |
| 40 | + print("Please make sure input_data_file path is correct.") |
| 41 | + return self.train_X, self.train_Y |
| 42 | + |
| 43 | + self.train_X, self.train_Y = utility.DatasetLoader.load(input_data_file) |
| 44 | + |
| 45 | + return self.train_X, self.train_Y |
| 46 | + |
| 47 | + def load_test_data(self, input_data_file=''): |
| 48 | + |
| 49 | + if (input_data_file == ''): |
| 50 | + input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/decision_stump_test.dat")) |
| 51 | + else: |
| 52 | + if (os.path.isfile(input_data_file) is not True): |
| 53 | + print("Please make sure input_data_file path is correct.") |
| 54 | + return self.test_X, self.test_Y |
| 55 | + |
| 56 | + self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) |
| 57 | + |
| 58 | + if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): |
| 59 | + self.test_X = self.test_X[:, 1:] |
| 60 | + |
| 61 | + self.test_X = utility.DatasetLoader.feature_transform( |
| 62 | + self.test_X, |
| 63 | + self.feature_transform_mode, |
| 64 | + self.feature_transform_degree |
| 65 | + ) |
| 66 | + |
| 67 | + return self.test_X, self.test_Y |
| 68 | + |
| 69 | + def set_param(self, run_t): |
| 70 | + |
| 71 | + self.run_t = run_t |
| 72 | + |
| 73 | + return self.run_t |
| 74 | + |
| 75 | + def init_W(self, mode='normal'): |
| 76 | + |
| 77 | + if (self.status != 'load_train_data') and (self.status != 'train'): |
| 78 | + print("Please load train data first.") |
| 79 | + return self.W |
| 80 | + |
| 81 | + self.status = 'init' |
| 82 | + |
| 83 | + self.data_num = len(self.train_Y) |
| 84 | + self.data_demension = len(self.train_X[0]) |
| 85 | + self.weak_learner = [None] * self.run_t |
| 86 | + self.alpha = [0.0] * self.run_t |
| 87 | + self.W = np.zeros(self.data_demension) |
| 88 | + |
| 89 | + return self.W |
| 90 | + |
| 91 | + def score_function(self, x, W): |
| 92 | + |
| 93 | + score = 0.0 |
| 94 | + |
| 95 | + for i, weak_learner in enumerate(self.weak_learner): |
| 96 | + predict_string = np.array(map(str, x)) |
| 97 | + predict_string = ' '.join(predict_string[1:]) |
| 98 | + prediction = weak_learner.prediction(predict_string, 'future_data') |
| 99 | + score = score + (self.alpha[i] * prediction['prediction']) |
| 100 | + |
| 101 | + score = np.sign(score) |
| 102 | + |
| 103 | + return score |
| 104 | + |
| 105 | + def error_function(self, y_prediction, y_truth): |
| 106 | + |
| 107 | + if y_prediction != y_truth: |
| 108 | + return 1 |
| 109 | + else: |
| 110 | + return 0 |
| 111 | + |
| 112 | + def calculate_avg_error(self, X, Y, W): |
| 113 | + |
| 114 | + return super(BinaryClassifier, self).calculate_avg_error(X, Y, W) |
| 115 | + |
| 116 | + def calculate_test_data_avg_error(self): |
| 117 | + |
| 118 | + return super(BinaryClassifier, self).calculate_test_data_avg_error() |
| 119 | + |
| 120 | + def calculate_alpha_u(self, weak_learner, u): |
| 121 | + |
| 122 | + alpha = 0.0 |
| 123 | + epsiloin = 0.0 |
| 124 | + data_num = len(weak_learner.train_Y) |
| 125 | + |
| 126 | + for i in range(data_num): |
| 127 | + predict_string = np.array(map(str, weak_learner.train_X[i])) |
| 128 | + predict_string = ' '.join(predict_string[1:]) + ' ' + str(weak_learner.train_Y[i]) |
| 129 | + prediction = weak_learner.prediction(predict_string, 'test_data') |
| 130 | + if (float(prediction['prediction']) != float(prediction['input_data_y'])): |
| 131 | + epsiloin += (u[i] * 1.0) |
| 132 | + |
| 133 | + epsiloin = epsiloin / np.sum(u) |
| 134 | + tune_alpha = np.sqrt((1.0-epsiloin)/epsiloin) |
| 135 | + alpha = np.log(tune_alpha) |
| 136 | + |
| 137 | + new_u = [] |
| 138 | + |
| 139 | + for i in range(data_num): |
| 140 | + predict_string = np.array(map(str, weak_learner.train_X[i])) |
| 141 | + predict_string = ' '.join(predict_string[1:]) + ' ' + str(weak_learner.train_Y[i]) |
| 142 | + prediction = weak_learner.prediction(predict_string, 'test_data') |
| 143 | + if (float(prediction['prediction']) != float(prediction['input_data_y'])): |
| 144 | + new_u.append(u[i] * tune_alpha) |
| 145 | + else: |
| 146 | + new_u.append(u[i] / tune_alpha) |
| 147 | + |
| 148 | + return alpha, np.array(new_u) |
| 149 | + |
| 150 | + def train(self): |
| 151 | + |
| 152 | + if (self.status != 'init'): |
| 153 | + print("Please load train data and init W first.") |
| 154 | + return self.W |
| 155 | + |
| 156 | + self.status = 'train' |
| 157 | + |
| 158 | + u = np.array([(1.0 / self.data_num)] * self.data_num) |
| 159 | + |
| 160 | + for t in range(self.run_t): |
| 161 | + |
| 162 | + print("Round "+str(t+1)) |
| 163 | + |
| 164 | + decision_stump_bc = decision_stump.BinaryClassifier() |
| 165 | + decision_stump_bc.status = 'load_train_data' |
| 166 | + decision_stump_bc.train_X = self.train_X |
| 167 | + decision_stump_bc.train_Y = self.train_Y |
| 168 | + decision_stump_bc.set_param(u) |
| 169 | + decision_stump_bc.init_W() |
| 170 | + decision_stump_bc.train() |
| 171 | + |
| 172 | + alpha, u = self.calculate_alpha_u(decision_stump_bc, u) |
| 173 | + |
| 174 | + self.weak_learner[t] = decision_stump_bc |
| 175 | + self.alpha[t] = alpha |
| 176 | + |
| 177 | + return self.W |
| 178 | + |
| 179 | + def prediction(self, input_data='', mode='test_data'): |
| 180 | + |
| 181 | + return super(BinaryClassifier, self).prediction(input_data, mode) |
0 commit comments