-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathxvqa.py
183 lines (152 loc) · 6.4 KB
/
xvqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models
import torchvision.datasets.folder
import torchvision.transforms as transforms
import torchvision.transforms.functional as Ft
from pytorch_transformers import BertTokenizer
import os
import db
from PIL import Image
import cv2
import numpy
#QA classifier
import qa_classifier as qa_classifier
qa_classifier=qa_classifier.qa_classifier;
qtypes=['object', 'color', 'action', 'count', 'time', 'weather']
import model_7x7 as base_model
class xvqa:
def __init__(self,args_models):
#Prepare ResNet152 for feature extraction
with torch.no_grad():
resnet152=torchvision.models.resnet152(pretrained=True)
resnet152=nn.Sequential(*list(resnet152.children())[:-2]).cuda();
resnet152=nn.DataParallel(resnet152).cuda()
resnet152.eval();
self.resnet152=resnet152;
#Prepare BERT tokenizer for question
self.tokenizer=BertTokenizer.from_pretrained('bert-base-uncased');
self.tokenizer.max_qlength=30;
#Prepare several BERT-VQA models for QA
print('Loading model')
models=[];
for m in args_models:
args_m=torch.load(os.path.join(m['root'],'args.pt'));
model=base_model.simple_vqa_model(args_m).cuda();
model=nn.DataParallel(model).cuda()
checkpoint=torch.load(os.path.join(m['root'],'model_checkpoint.pt'));
model.load_state_dict(checkpoint['model_state'])
model.eval()
model.answer_dictionary=torch.load(os.path.join(m['root'],'answer_dictionary.pt'));
model.args=args_m;
models.append(model);
self.models=models;
def parse_question(self,qtext):
if isinstance(qtext,list):
qtokens=[];
question=[];
for qi in qtext:
qtokens_i,question_i=self.parse_question(qi);
qtokens.append(qtokens_i);
question.append(question_i);
with torch.no_grad():
question=torch.stack(question,dim=0);
return qtokens,question;
else:
qtokens=self.tokenizer.tokenize(qtext);
if len(qtokens)>self.tokenizer.max_qlength-2:
qtokens=qtokens[:self.tokenizer.max_qlength-2];
qtokens=['[CLS]']+qtokens+['[SEP]'];
question=self.tokenizer.convert_tokens_to_ids(qtokens);
question=question+[0]*(self.tokenizer.max_qlength-len(question));
question=torch.LongTensor(question);
return qtokens,question;
def get_7x7_features(self,Is):
#Resize & Normalize
with torch.no_grad():
It=[]
for I in Is:
I=F.adaptive_avg_pool2d(I,(224,224));
I=Ft.normalize(I,mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]);
It.append(I);
It=torch.stack(It,dim=0);
#Extract features
fvs=[];
batch=8;
for i in range(0,len(It),batch):
r=min(i+batch,len(It));
fv=self.resnet152(It[i:r]);
fvs.append(fv);
fvs=torch.cat(fvs,dim=0);
return fvs;
def get_maskrcnn_features(self,Is):
nim=len(Is);
fv36=torch.Tensor(nim,36,2048).fill_(0)
boxes=torch.Tensor(nim,36,6).fill_(0);
return fv36,boxes;
def vqa(self,Is,Qs,use_model=''):
with torch.no_grad():
qtokens,q=self.parse_question(Qs);
print(qtokens)
fv7x7=self.get_7x7_features(Is);
fv36,boxes=self.get_maskrcnn_features(Is);
scores,attn=self.models[use_model](fv36,fv7x7.permute(0,2,3,1),q);
scores=scores.data.cpu();
attn=torch.stack(attn,dim=1).data.cpu();
top1_conf,pred=scores.max(dim=1);
As=[self.models[use_model].answer_dictionary[i] for i in pred.tolist()];
return db.Table({'I':Is,'Q':Qs,'A':As,'scores':scores,'attention':attn,'qtoken':qtokens,'qtensor':q,'features_7x7':fv7x7,'features_fv36':fv36,'bbox':boxes,'model':[use_model for q in Qs]});
#attn: 7x7 matrix
#imurl: image url
#output_fname: fname wrt root
def write_spatial_attention(self,I,attn,output_fname):
eps=1e-4
I=Ft.to_pil_image(I);
I=I.resize((224, 224))
I=numpy.asarray(I).astype(numpy.float32)
attn=attn.view(7,7).numpy()
attn=cv2.resize(attn, (224, 224))
attn=(attn-numpy.min(attn)+eps)/(numpy.max(attn)-numpy.min(attn)+eps)
att_heatmap=cv2.applyColorMap(numpy.uint8(255*attn), cv2.COLORMAP_JET)
alpha = 0.5
output_image=(1-alpha)*att_heatmap+alpha*I;
cv2.imwrite(output_fname,output_image)
return;
def explain_attention_map_average(self,table_vqa):
key=table_vqa['id'][0];
attn=table_vqa['attention'][0];
qtoken=table_vqa['qtoken'][0];
L=len(qtoken);
attn_sp=attn[-1,:,:L, 66:].mean(0).mean(0).view(7,7);
attn_fname='./attn/%s_spatial_average.jpg'%key;
self.write_spatial_attention(table_vqa['I'][0],attn_sp,attn_fname);
return attn_fname;
#def explain_attention_map_pairs(self,table_vqa):
def explain_top_answers(self,table_vqa,k=5):
n=len(table_vqa);
topk_answers=[];
topk_confidence=[];
for i in range(n):
use_model=table_vqa['model'][i];
s=table_vqa['scores'][i];
p=F.softmax(s,dim=0);
p,ind=p.sort(dim=0,descending=True);
p=p[:k].tolist();
ind=ind[:k].tolist();
a=[self.models[use_model].answer_dictionary[j] for j in ind];
topk_answers_i=[];
for j in range(len(a)):
topk_answers_i.append({'answer':a[j],'confidence':p[j]});
topk_answers.append(topk_answers_i);
return topk_answers;
#Question type as perceived by the model
def explain_qtype(self,table_vqa):
qac=qa_classifier();
qtype=[];
n=len(table_vqa);
for i in range(n):
question=table_vqa['Q'][i];
answer=table_vqa['A'][i];
qtype.append(qac.classify_qa(question=question,answer=answer))
return qtype;