-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathflask_server.py
326 lines (260 loc) · 9.79 KB
/
flask_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import torch
from flask import Flask, request, send_from_directory
from flask import Response
import jsonrpcserver
from jsonrpcserver import methods
import json
from flask_cors import CORS
import time
import datetime
import math
import random
import os
import sys
import requests
import numpy as np
import torchvision
import torchvision.models
import torchvision.utils
import torchvision.datasets.folder
import torchvision.transforms as transforms
import torchvision.transforms.functional as Ft
from PIL import Image, ImageOps, ImageEnhance
import torch
from torch.autograd import Variable,grad
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
import numpy
import scipy
import scipy.misc
from io import BytesIO
import argparse
import string
import random
#Command line options
parser=argparse.ArgumentParser(description='')
# Model
parser.add_argument('--port', type=int, default=5001)
params=parser.parse_args();
params.argv=sys.argv;
app = Flask(__name__, static_url_path='')
CORS(app)
#Prepare vqa models
models=[{'root':'res/models/simple_bert_7x7_4/'},{'root':'res/models/0000036/'},{'root':'res/models/0000038/'},{'root':'res/models/0000040/'},{'root':'res/models/0000044/'}];
robot_names=['Robot X', 'Robot A', 'Robot O', 'Robot C', 'Robot N'];
import xvqa2 as xvqa
m=xvqa.xvqa(models);
#Prepare inpainting model
import lib_fido_v2 as lib_fido
fido=lib_fido.FIDO(inpainter='CAInpainter',batch=1);
def random_string(stringLength=10):
"""Generate a random string of fixed length """
letters = string.ascii_lowercase
return ''.join(random.choice(letters) for i in range(stringLength))
import lru_cache
lru_image=lru_cache.new(300);
lru_vqa=lru_cache.new(300);
p_use_cache=0.5;
def load_image(imurl):
if imurl in lru_image and float(torch.rand(1))<p_use_cache:
image=lru_image[imurl].copy();
else:
response=requests.get(imurl);
image=Image.open(BytesIO(response.content));
lru_image[imurl]=image;
image=image.copy();
return image;
@methods.add
def remove_box(imurl,misc):
image=load_image(imurl);
x=misc[0];
y=misc[1];
w=misc[2];
h=misc[3];
imout=fido.batch_remove_box([image],[x],[y],[w],[h])[0];
id=random_string(12);
fname='counterfactual/%s.jpg'%(id);
torchvision.utils.save_image(imout,fname);
return {'imurl':fname};
@methods.add
def remove_background(imurl,misc):
image=load_image(imurl);
x=misc[0];
y=misc[1];
w=misc[2];
h=misc[3];
imout=fido.batch_remove_box_reverse([image],[x],[y],[w],[h])[0];
id=random_string(12);
fname='counterfactual/%s.jpg'%(id);
torchvision.utils.save_image(imout,fname);
return {'imurl':fname};
@methods.add
def black_and_white(imurl,misc=None):
image=load_image(imurl);
image=Ft.to_tensor(image);
imavg=image.mean(0,keepdim=True);
imavg=imavg.repeat(3,1,1);
id=random_string(12);
fname='counterfactual/%s.jpg'%(id);
torchvision.utils.save_image(imavg,fname);
return {'imurl':fname};
@methods.add
def zoom_in(imurl,misc):
image=load_image(imurl);
x=misc[0];
y=misc[1];
w=misc[2];
h=misc[3];
image=Ft.to_tensor(image);
x0=int(misc[0]*image.shape[2]);
y0=int(misc[1]*image.shape[1]);
x1=int((misc[0]+misc[2])*image.shape[2]);
y1=int((misc[1]+misc[3])*image.shape[1]);
x0=min(x0,image.shape[2]-2);
y0=min(y0,image.shape[1]-2);
x1=max(x1,x0+1);
y1=max(y1,y0+1);
imcrop=image[:,y0:y1,x0:x1];
id=random_string(12);
fname='counterfactual/%s.jpg'%(id);
torchvision.utils.save_image(imcrop,fname);
return {'imurl':fname};
@methods.add
def vqa(imurl,question):
if not (imurl,question) in lru_vqa:
image=load_image(imurl);
data=[];
for x in range(len(models)):
table_result=m.vqa([Ft.to_tensor(image)],[question],x);
table_result['id']=[random_string(12)];
data.append(table_result);
lru_vqa[(imurl,question)]=data;
else:
data=lru_vqa[(imurl,question)];
answers=[d['A'][0] for d in data];
return {'answers':answers,'question':question}
@methods.add
def average_attn(imurl,question):
if not (imurl,question) in lru_vqa:
_=vqa(imurl,question);
data=lru_vqa[(imurl,question)];
spatial_attn=[];#list of objects, average, by_token, by_7x7_zone, tokens, scores, url_template
object_attn=[]; #list of objects, average, by_token, by_box, tokens, boxes, scores, url_template
topk_answers=[]; #list of objects, answer, confidence
for i in range(len(models)):
#Spatial average attention
if not 'spatial_attn_average' in data[i].d.keys():
fname=m.explain_attention_map_average(data[i]);
data[i]['spatial_attn_average']=[fname];
else:
fname=data[i]['spatial_attn_average'][0];
#Spatial average attention
if not 'object_attn_average' in data[i].d.keys():
fname=m.explain_object_attention_average(data[i]);
data[i]['object_attn_average']=[fname];
else:
fname=data[i]['object_attn_average'][0];
qtokens=data[i]['qtoken'][0];
scores=data[i]['attention'][0].tolist();
spatial_attn_avg=data[i]['spatial_attn_average'][0];
object_attn_avg=data[i]['object_attn_average'][0];
spatial_attn.append({'average':spatial_attn_avg,'tokens':qtokens,'scores':[],'by_token':[],'by_7x7_zone':[]});
object_attn.append({'average':object_attn_avg,'tokens':qtokens,'boxes':[],'scores':[],'by_token':[],'by_box':[]});
#Top k answers
topk_answers.append(m.explain_top_answers(data[i])[0]);
return {'spatial_attn':spatial_attn,'object_attn':object_attn,'topk_answers':topk_answers,'related_qas':[]};
@methods.add
def explain(imurl,question):
if not (imurl,question) in lru_vqa:
_=vqa(imurl,question);
data=lru_vqa[(imurl,question)];
spatial_attn=[];#list of objects, average, by_token, by_7x7_zone, tokens, scores, url_template
object_attn=[]; #list of objects, average, by_token, by_box, tokens, boxes, scores, url_template
errorcam=[]; #list of objects, average
topk_answers=[]; #list of objects, answer, confidence
related_qas=[]; #list of objects, question, answer
for i in range(len(models)):
#Spatial average attention
if not 'spatial_attn_average' in data[i].d.keys():
fname=m.explain_attention_map_average(data[i]);
data[i]['spatial_attn_average']=[fname];
else:
fname=data[i]['spatial_attn_average'][0];
#Object average attention
if not 'object_attn_average' in data[i].d.keys():
fname=m.explain_object_attention_average(data[i]);
data[i]['object_attn_average']=[fname];
else:
fname=data[i]['object_attn_average'][0];
#Errorcam
if not 'errorcam' in data[i].d.keys():
fname=m.explain_errormap(data[0]);
data[i]['errorcam']=[fname];
else:
fname=data[i]['errorcam'][0];
qtokens=data[i]['qtoken'][0];
scores=data[i]['attention'][0].tolist();
spatial_attn_avg=data[i]['spatial_attn_average'][0];
object_attn_avg=data[i]['object_attn_average'][0];
errorcam_fname=data[i]['errorcam'][0];
spatial_fnames=m.explain_attention_map_all(data[i]);
object_fnames=m.explain_object_attention_all(data[i]);
spatial_attn.append({'average':spatial_attn_avg,'tokens':qtokens,'scores':[],'by_token':spatial_fnames,'by_7x7_zone':[]});
errorcam.append({'average':errorcam_fname})
object_attn.append({'average':object_attn_avg,'tokens':qtokens,'boxes':[],'scores':[],'by_token':object_fnames,'by_box':[]});
#Top k answers
topk_answers.append(m.explain_top_answers(data[i])[0]);
#Related QAs
related_qas.append(m.explain_related_qas(data[i])[0]);
return {'spatial_attn':spatial_attn,'object_attn':object_attn,'topk_answers':topk_answers,'related_qas':related_qas,'errorcam':errorcam};
@methods.add
def explain_full(imurl,question):
#One attention map per word
#One attention map per box
if not (imurl,question) in lru_vqa:
_=vqa(imurl,question);
data=lru_vqa[(imurl,question)];
#for i in range(len(models)):
# #Spatial average attention
# spatial_fnames=m.explain_attention_map_all(data[i]);
# object_fnames=m.explain_object_attention_all(data[i]);
return {};
@methods.add
def list_ims():
ims=os.listdir('./val/');
ims=[os.path.join('val',x) for x in ims];
return {'ims':ims};
@methods.add
def list_models():
return {'models':robot_names};
#Serving files
@app.route('/', methods=['GET','POST'])
def root():
return send_from_directory('./','index.html')
@app.route('/handbook/', methods=['GET','POST'])
def hb():
return send_from_directory('./','handbook.html')
@app.route('/handbook/res/<path:path>')
def send_hbres(path):
return send_from_directory('./res/', path)
@app.route('/res/<path:path>')
def send_res(path):
return send_from_directory('./res/', path)
@app.route('/val/<path:path>')
def send_png(path):
return send_from_directory('./val/', path)
@app.route('/attn/<path:path>')
def send_png_attn(path):
return send_from_directory('./attn/', path)
@app.route('/counterfactual/<path:path>')
def send_png_counterfactual(path):
return send_from_directory('./counterfactual/', path)
#Serving functions
@app.route('/api/', methods=['POST'])
def api():
req = request.get_data().decode()
response = jsonrpcserver.dispatch(req)
return Response(str(response), response.http_status,mimetype='application/json')
if __name__ == "__main__":
app.run(host='0.0.0.0',threaded=True, port=params.port);