-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathe_coshl.c
107 lines (88 loc) · 2.75 KB
/
e_coshl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_coshl(x)
* Method :
* mathematically coshl(x) if defined to be (exp(x)+exp(-x))/2
* 1. Replace x by |x| (coshl(x) = coshl(-x)).
* 2.
* [ exp(x) - 1 ]^2
* 0 <= x <= ln2/2 : coshl(x) := 1 + -------------------
* 2*exp(x)
*
* exp(x) + 1/exp(x)
* ln2/2 <= x <= 22 : coshl(x) := -------------------
* 2
* 22 <= x <= lnovft : coshl(x) := expl(x)/2
* lnovft <= x <= ln2ovft: coshl(x) := expl(x/2)/2 * expl(x/2)
* ln2ovft < x : coshl(x) := huge*huge (overflow)
*
* Special cases:
* coshl(x) is |x| if x is +INF, -INF, or NaN.
* only coshl(0)=1 is exact for finite x.
*/
#ifndef __FDLIBM_H__
#include "fdlibm.h"
#endif
#ifndef __NO_LONG_DOUBLE_MATH
#ifndef __have_fpu_cosh
long double __ieee754_coshl(long double x)
{
long double t, w;
int32_t ex;
uint32_t mx, lx;
static const long double one = 1.0;
static const long double half = 0.5;
static const long double hugeval = 1.0e4900L;
/* High word of |x|. */
GET_LDOUBLE_WORDS(ex, mx, lx, x);
ex &= 0x7fff;
/* x is INF or NaN */
if (ex == 0x7fff)
return x * x;
/* |x| in [0,22] */
if (ex < 0x4003 || (ex == 0x4003 && mx < UC(0xb0000000)))
{
/* |x| in [0,0.5*ln2], return 1+expm1l(|x|)^2/(2*expl(|x|)) */
if (ex < 0x3ffd || (ex == 0x3ffd && mx < UC(0xb17217f7)))
{
t = __ieee754_expm1l(__ieee754_fabsl(x));
w = one + t;
if (ex < 0x3fbc)
return w; /* cosh(tiny) = 1 */
return one + (t * t) / (w + w);
}
/* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
t = __ieee754_expl(__ieee754_fabsl(x));
return half * t + half / t;
}
/* |x| in [22, ln(maxdouble)] return half*exp(|x|) */
if (ex < 0x400c || (ex == 0x400c && mx < UC(0xb1700000)))
return half * __ieee754_expl(__ieee754_fabsl(x));
/* |x| in [log(maxdouble), log(2*maxdouble)) */
if (ex == 0x400c && (mx < UC(0xb174ddc0) || (mx == UC(0xb174ddc0) && lx < UC(0x31aec0eb))))
{
w = __ieee754_expl(half * __ieee754_fabsl(x));
t = half * w;
return t * w;
}
/* |x| >= log(2*maxdouble), cosh(x) overflow */
return hugeval * hugeval;
}
#endif
long double __coshl(long double x)
{
long double z = __ieee754_coshl(x);
if (!isfinite(z) && isfinite(x) && _LIB_VERSION != _IEEE_)
return __kernel_standard_l(x, x, z, KMATHERRL_COSH); /* cosh overflow */
return z;
}
__typeof(__coshl) coshl __attribute__((weak, alias("__coshl")));
#endif