-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathe_asinl.c
164 lines (147 loc) · 5.44 KB
/
e_asinl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
Long double expansions are
Copyright (C) 2001 Stephen L. Moshier <[email protected]>
and are incorporated herein by permission of the author. The author
reserves the right to distribute this material elsewhere under different
copying permissions. These modifications are distributed here under
the following terms:
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
/* __ieee754_asin(x)
* Method :
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
* we approximate asin(x) on [0,0.5] by
* asin(x) = x + x*x^2*R(x^2)
*
* For x in [0.5,1]
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
* then for x>0.98
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
* For x<=0.98, let pio4_hi = pio2_hi/2, then
* f = hi part of s;
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
* and
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
*/
#ifndef __FDLIBM_H__
#include "fdlibm.h"
#endif
#ifndef __NO_LONG_DOUBLE_MATH
#ifndef __have_fpu_asin
long double __ieee754_asinl(long double x)
{
long double t, w, p, q, c, r, s;
int32_t ix;
uint32_t se, i0, i1, k;
static const long double one = 1.0L;
static const long double hugeval = 1.0e+4932L;
static const long double pio2_hi = 0x1.921fb54442d1846ap+0L; /* pi/2 rounded to nearest to 64 bits. */
static const long double pio2_lo = -0x7.6733ae8fe47c65d8p-68L; /* pi/2 - pio2_hi rounded to nearest to 64 bits. */
static const long double pio4_hi = 0xc.90fdaa22168c235p-4L; /* pi/4 rounded to nearest to 64 bits. */
/* coefficient for R(x^2) */
/* asin(x) = x + x^3 pS(x^2) / qS(x^2)
0 <= x <= 0.5
peak relative error 1.9e-21 */
static const long double pS0 = -1.008714657938491626019651170502036851607E1L;
static const long double pS1 = 2.331460313214179572063441834101394865259E1L;
static const long double pS2 = -1.863169762159016144159202387315381830227E1L;
static const long double pS3 = 5.930399351579141771077475766877674661747E0L;
static const long double pS4 = -6.121291917696920296944056882932695185001E-1L;
static const long double pS5 = 3.776934006243367487161248678019350338383E-3L;
static const long double qS0 = -6.052287947630949712886794360635592886517E1L;
static const long double qS1 = 1.671229145571899593737596543114258558503E2L;
static const long double qS2 = -1.707840117062586426144397688315411324388E2L;
static const long double qS3 = 7.870295154902110425886636075950077640623E1L;
static const long double qS4 = -1.568433562487314651121702982333303458814E1L;
/* 1.000000000000000000000000000000000000000E0 */
GET_LDOUBLE_WORDS(se, i0, i1, x);
ix = se & 0x7fff;
ix = (ix << 16) | (i0 >> 16);
if (ix >= IC(0x3fff8000))
{ /* |x|>= 1 */
if (ix == IC(0x3fff8000) && ((i0 - UC(0x80000000)) | i1) == 0)
/* asin(1)=+-pi/2 with inexact */
return x * pio2_hi + x * pio2_lo;
return (x - x) / (x - x); /* asin(|x|>1) is NaN */
} else if (ix < IC(0x3ffe8000))
{ /* |x|<0.5 */
if (ix < IC(0x3fde8000))
{ /* if |x| < 2**-33 */
if (hugeval + x > one)
return x; /* return x with inexact if x!=0 */
} else
{
t = x * x;
p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t))));
w = p / q;
return x + x * w;
}
}
/* 1> |x|>= 0.5 */
w = one - __ieee754_fabsl(x);
t = w * 0.5;
p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t))));
s = __ieee754_sqrtl(t);
if (ix >= IC(0x3ffef999))
{ /* if |x| > 0.975 */
w = p / q;
t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
} else
{
GET_LDOUBLE_WORDS(k, i0, i1, s);
i1 = 0;
SET_LDOUBLE_WORDS(w, k, i0, i1);
c = (t - w * w) / (s + w);
r = p / q;
p = 2.0 * s * r - (pio2_lo - 2.0 * c);
q = pio4_hi - 2.0 * w;
t = pio4_hi - (p - q);
}
if ((se & 0x8000) == 0)
return t;
return -t;
}
#endif
/* wrapper asin */
long double __asinl(long double x)
{
if (isgreater(__ieee754_fabsl(x), 1.0) && _LIB_VERSION != _IEEE_)
{
/* asin(|x|>1) */
feraiseexcept(FE_INVALID);
return __kernel_standard_l(x, x, __builtin_nanl(""), KMATHERRL_ASIN);
}
return __ieee754_asinl(x);
}
__typeof(__asinl) asinl __attribute__((weak, alias("__asinl")));
#endif