-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathe_asin.c
142 lines (130 loc) · 4.42 KB
/
e_asin.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/* @(#)e_asin.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_asin(x)
* Method :
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
* we approximate asin(x) on [0,0.5] by
* asin(x) = x + x*x^2*R(x^2)
* where
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
* and its remez error is bounded by
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
*
* For x in [0.5,1]
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
* then for x>0.98
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
* For x<=0.98, let pio4_hi = pio2_hi/2, then
* f = hi part of s;
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
* and
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
*/
#ifndef __FDLIBM_H__
#include "fdlibm.h"
#endif
#ifndef __have_fpu_asin
double __ieee754_asin(double x)
{
double t, w, p, q, c, r, s;
int32_t hx, ix;
static const double one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
static const double hugeval = 1.000e+300;
static const double pio2_hi = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */
static const double pio2_lo = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */
static const double pio4_hi = 7.85398163397448278999e-01; /* 0x3FE921FB, 0x54442D18 */
/* coefficient for R(x^2) */
static const double pS0 = 1.66666666666666657415e-01; /* 0x3FC55555, 0x55555555 */
static const double pS1 = -3.25565818622400915405e-01; /* 0xBFD4D612, 0x03EB6F7D */
static const double pS2 = 2.01212532134862925881e-01; /* 0x3FC9C155, 0x0E884455 */
static const double pS3 = -4.00555345006794114027e-02; /* 0xBFA48228, 0xB5688F3B */
static const double pS4 = 7.91534994289814532176e-04; /* 0x3F49EFE0, 0x7501B288 */
static const double pS5 = 3.47933107596021167570e-05; /* 0x3F023DE1, 0x0DFDF709 */
static const double qS1 = -2.40339491173441421878e+00; /* 0xC0033A27, 0x1C8A2D4B */
static const double qS2 = 2.02094576023350569471e+00; /* 0x40002AE5, 0x9C598AC8 */
static const double qS3 = -6.88283971605453293030e-01; /* 0xBFE6066C, 0x1B8D0159 */
static const double qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
GET_HIGH_WORD(hx, x);
ix = hx & IC(0x7fffffff);
if (ix >= IC(0x3ff00000))
{ /* |x|>= 1 */
uint32_t lx;
GET_LOW_WORD(lx, x);
if (((ix - IC(0x3ff00000)) | lx) == 0)
/* asin(1)=+-pi/2 with inexact */
return x * pio2_hi + x * pio2_lo;
return (x - x) / (x - x); /* asin(|x|>1) is NaN */
} else if (ix < IC(0x3fe00000))
{ /* |x|<0.5 */
if (ix < IC(0x3e400000))
{ /* if |x| < 2**-27 */
if (hugeval + x > one)
return x; /* return x with inexact if x!=0 */
} else
{
t = x * x;
p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
w = p / q;
return x + x * w;
}
}
/* 1> |x|>= 0.5 */
w = one - __ieee754_fabs(x);
t = w * 0.5;
p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
s = __ieee754_sqrt(t);
if (ix >= IC(0x3FEF3333))
{ /* if |x| > 0.975 */
w = p / q;
t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
} else
{
w = s;
SET_LOW_WORD(w, 0);
c = (t - w * w) / (s + w);
r = p / q;
p = 2.0 * s * r - (pio2_lo - 2.0 * c);
q = pio4_hi - 2.0 * w;
t = pio4_hi - (p - q);
}
if (hx > 0)
return t;
return -t;
}
#endif
/* wrapper asin */
double __asin(double x)
{
if (_LIB_VERSION != _IEEE_ && isgreater(__ieee754_fabs(x), 1.0))
{
/* asin(|x|>1) */
feraiseexcept(FE_INVALID);
return __kernel_standard(x, x, __builtin_nan(""), KMATHERR_ASIN);
}
return __ieee754_asin(x);
}
__typeof(__asin) asin __attribute__((weak, alias("__asin")));
#ifdef __NO_LONG_DOUBLE_MATH
__typeof(__asinl) __asinl __attribute__((alias("__asin")));
__typeof(__asinl) asinl __attribute__((weak, alias("__asin")));
#endif