From 69821e4342100fbe5b8ef5430b26034dcfefc515 Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Sun, 30 Jun 2024 17:45:37 +0200 Subject: [PATCH] fix decls --- .github/workflows/push.yml | 2 +- blueprint/src/chapter/main.tex | 22 +++++++++++----------- 2 files changed, 12 insertions(+), 12 deletions(-) diff --git a/.github/workflows/push.yml b/.github/workflows/push.yml index 3d6b5c24..9ee435b4 100644 --- a/.github/workflows/push.yml +++ b/.github/workflows/push.yml @@ -80,7 +80,7 @@ jobs: - name: Install blueprint dependencies run: | - pip install -r blueprint/requirements.txt + cd blueprint && pip install -r requirements.txt - name: Build blueprint and copy to `docs/blueprint` run: | diff --git a/blueprint/src/chapter/main.tex b/blueprint/src/chapter/main.tex index 3643b2ba..8a67bd80 100644 --- a/blueprint/src/chapter/main.tex +++ b/blueprint/src/chapter/main.tex @@ -582,7 +582,7 @@ \chapter{Proof of Metric Space Carleson, overview} \begin{proposition}[Hardy--Littlewood] \label{Hardy-Littlewood} \leanok -\lean{measure_biUnion_le_lintegral, maximalFunction_lt_top, snorm_maximalFunction, M_lt_top, +\lean{measure_biUnion_le_lintegral, maximalFunction_le_snorm, hasStrongType_maximalFunction, M_lt_top, laverage_le_M, snorm_M_le} \uses{layer-cake-representation,covering-separable-space} Let $\mathcal{B}$ be a finite collection of balls in $X$. @@ -6055,7 +6055,7 @@ \chapter{Proof of Vitali covering and Hardy--Littlewood} We begin with a classical representation of the Lebesgue norm. \begin{lemma}[layer cake representation]\label{layer-cake-representation} \leanok -\lean{snorm_pow_eq_distribution} +\lean{MeasureTheory.snorm_pow_eq_distribution} Let $1\le p< \infty$. Then for any measurable function $u:X\to [0,\infty)$ on the measure space $X$ relative to the measure $\mu$ we have @@ -6408,7 +6408,7 @@ \section{The classical Carleson theorem} \begin{lemma}[smooth approximation] \label{smooth-approximation} \leanok - \lean{} + % \lean{} The function $f_0$ is $2\pi$-periodic. The function $f_0$ is smooth (and therefore measurable). The function $f_0$ satisfies for all $x\in \R$: @@ -6426,7 +6426,7 @@ \section{The classical Carleson theorem} \begin{lemma}[convergence for smooth] \label{convergence-for-smooth} \leanok - \lean{} + % \lean{} \uses{convergence-for-twice-contdiff} There exists some $N_0 \in \N$ such that for all $N>N_0$ and $x\in [0,2\pi]$ we have \begin{equation} @@ -6438,7 +6438,7 @@ \section{The classical Carleson theorem} \begin{lemma}[control approximation effect] \label{control-approximation-effect} \leanok - \lean{} + % \lean{} \uses{real-Carleson} There is a set $E \subset \R$ with Lebesgue measure $|E|\le \epsilon$ such that for all @@ -6492,7 +6492,7 @@ \section{The classical Carleson theorem} \Cref{metric-space-Carleson}. \begin{lemma}[real Carleson]\label{real-Carleson} \leanok -\lean{} +% \lean{} \uses{metric-space-Carleson,real-line-metric,real-line-measure,real-line-doubling,oscillation-control,frequency-monotone,frequency-ball-doubling,frequency-ball-growth,integer-ball-cover,real-van-der-Corput,nontangential-Hilbert} Let $F,G$ be Borel subsets of $\R$ with finite measure. Let $f$ be a bounded measurable function on $\R$ with $|f|\le \mathbf{1}_F$. Then \begin{equation} @@ -6680,7 +6680,7 @@ \section{The classical Carleson theorem} \begin{lemma}[Hilbert kernel bound] \label{Hilbert-kernel-bound} \leanok -\lean{} +% \lean{} \uses{lower-secant-bound} For $x,y\in \R$ with $x\neq y$ we have \begin{equation}\label{eqcarl30} @@ -6705,7 +6705,7 @@ \section{The classical Carleson theorem} \begin{lemma}[Hilbert kernel regularity] \label{Hilbert-kernel-regularity} \leanok -\lean{} +% \lean{} \uses{lower-secant-bound} For $x,y,y'\in \R$ with $x\neq y,y'$ and \begin{equation} @@ -6764,7 +6764,7 @@ \section{Smooth functions.} \begin{lemma} \label{fourier-coeff-derivative} \leanok -\lean{} +% \lean{} Let $f:\R \to \C$ be $2\pi$-periodic and differentiable, and let $n \in \Z \setminus \{0\}$. Then \begin{equation} \widehat{f}_n = \frac{1}{i n} \widehat{f'}_n. @@ -6778,7 +6778,7 @@ \section{Smooth functions.} \begin{lemma} \label{convergence-of-coeffs-summable} \leanok -\lean{} +% \lean{} Let $f:\R \to \C$ such that \begin{equation} \sum_{n\in \Z} |\widehat{f}_n| < \infty. @@ -6799,7 +6799,7 @@ \section{Smooth functions.} \label{convergence-for-twice-contdiff} \uses{fourier-coeff-derivative,convergence-of-coeffs-summable} \leanok - \lean{} + % \lean{} Let $f:\R \to \C$ be $2\pi$-periodic and twice continuously differentiable. Then \begin{equation} \sup_{x\in [0,2\pi]} |f(x) - S_Nf(x)| \rightarrow 0