-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodules.py
240 lines (232 loc) · 9.81 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import tensorflow as tf
from hyperparams import hyperparams
hp = hyperparams()
import os
import glob
def get_next_batch(dir: str, mode='train', type='duration'):
'''
:param dir: String. TFRecord files directory.
:param mode: String. Mode in ['train', 'test']
:param type: String. In ['duration', 'acoustic']
:return: Batched tensor.
'''
if mode not in ['train', 'test']:
raise Exception(f'#-------------------------No supported mode {mode}. Please check.-------------------------#')
def _parse_function(proto):
parse_dics = {
'x': tf.VarLenFeature(dtype=tf.float32),
'x_shape': tf.FixedLenFeature(shape=(2,), dtype=tf.int64),
'y': tf.VarLenFeature(dtype=tf.float32),
'y_shape': tf.FixedLenFeature(shape=(2,), dtype=tf.int64)
}
parsed_example = tf.parse_single_example(proto, parse_dics)
parsed_example['x'] = tf.sparse_tensor_to_dense(parsed_example['x'])
parsed_example['y'] = tf.sparse_tensor_to_dense(parsed_example['y'])
parsed_example['x'] = tf.reshape(parsed_example['x'], parsed_example['x_shape'])
parsed_example['y'] = tf.reshape(parsed_example['y'], parsed_example['y_shape'])
return parsed_example
total_tf = glob.glob(f'{dir}/*.tfrecord')
tf_files = []
for i in total_tf:
if type == 'duration' and os.path.basename(i).find(f'_dur_{mode}.tfrecord') != -1:
tf_files.append(i)
elif type == 'acoustic' and os.path.basename(i).find(f'_syn_{mode}.tfrecord') != -1:
tf_files.append(i)
dataset = tf.data.TFRecordDataset(tf_files)
parsed_dataset = dataset.map(_parse_function)
if type == 'duration':
bn = hp.DUR_BATCH
x_dim = hp.DUR_LAB_DIM
y_dim = hp.DURATION_DIM
num_epoch = hp.DUR_EPOCH
else:
bn = hp.SYN_BATCH
x_dim = hp.SYN_LAB_DIM
y_dim = hp.ACOUSTIC_DIM
num_epoch = hp.SYN_EPOCH
batched_dataset = parsed_dataset.padded_batch(
batch_size=bn,
padded_shapes={
'x': [None, x_dim],
'x_shape': [None],
'y': [None, y_dim],
'y_shape': [None]
}
)
shuffled_dataset = batched_dataset.shuffle(buffer_size=bn)
epoched_dataset = shuffled_dataset.repeat(num_epoch)
iterator = epoched_dataset.make_one_shot_iterator()
next_element = iterator.get_next()
return next_element['x'], next_element['y']
def prenet(inputs,
num_units=None,
is_training=True,
scope='prenet',
reuse=None):
'''
:param inputs: A 3-D tensor. [N, T, D].
:param num_units: A list of two integers or None.
:param is_training: Boolean.
:param scope: String. Scope name.
:param reuse: False or True or tf.AUTO_REUSE.
:return: [N, T, num_units]
'''
D = inputs.get_shape().as_list()[-1]
if num_units is None:
num_units = [D, D]
with tf.variable_scope(scope, reuse=reuse):
outputs = tf.layers.dense(inputs, units=num_units[0], activation=tf.nn.relu, name='dense_1')
outputs = tf.layers.dropout(outputs, rate=hp.DROPOUT_RATE, training=is_training, name='dropout_1')
outputs = tf.layers.dense(outputs, units=num_units[1], activation=tf.nn.relu, name='dense_2')
outputs = tf.layers.dropout(outputs, rate=hp.DROPOUT_RATE, training=is_training, name='dropout_2')
return outputs
def conv1d(inputs,
filter_nums=None,
kernel_size=1,
padding='SAME',
activation_fn=None,
data_format='channels_last',
scope='conv1d',
reuse=None):
'''
:param inputs: A 3-D tensor. [N, T, D].
:param filter_nums: An integer. Filters.
:param kernel_size: An integer.
:param padding: String. In ['SAME', 'VALID'].
:param activation_fn: TF activation function.
:param scope: String. Scope name.
:param reuse: False or True or tf.AUTO_REUSE.
:return: If padding is 'SAME' then [N, T, filter_nums] else ...
'''
if filter_nums is None:
filter_nums = inputs.get_shape().as_list()[-1]
with tf.variable_scope(scope, reuse=reuse):
outputs = tf.layers.conv1d(inputs, filters=filter_nums, kernel_size=kernel_size, padding=padding,
activation=activation_fn, data_format=data_format, name='conv1d')
return outputs
def highway(inputs,
num_units=None,
scope='highway',
reuse=None):
'''
:param inputs: A 3-D tensor. [N, T, D].
:param num_units: An integer or None.
:param scope: String. Scope name.
:param reuse: False or True or tf.AUTO_REUSE.
:return: A 3-D tensor. [N, T, D].
'''
if num_units is None:
num_units = inputs.get_shape().as_list()
with tf.variable_scope(scope, reuse=reuse):
H = tf.layers.dense(inputs, units=num_units, activation=tf.nn.relu, name='dense_H')
T = tf.layers.dense(inputs, units=num_units, activation=tf.nn.sigmoid, name='dense_T')
outputs = H * T + inputs * (1. - T)
return outputs
def gru(inputs,
num_units=None,
bidirection=False,
scope='gru',
reuse=None):
'''
:param inputs: A 3-D tensor. [N, T, D].
:param num_units: An integer.
:param bidirection: Boolean.
:param scope: String. Scope name.
:param reuse: False or True or tf.AUTO_REUSE.
:return: [N, T, num_units]
'''
if num_units is None:
num_units = inputs.get_shape().as_list()[-1]
with tf.variable_scope(scope, reuse=reuse):
cell = tf.nn.rnn_cell.GRUCell(num_units)
if bidirection:
bw_cell = tf.nn.rnn_cell.GRUCell(num_units)
outputs, _ = tf.nn.bidirectional_dynamic_rnn(cell, bw_cell, inputs=inputs, dtype=tf.float32)
return tf.concat(outputs, 2)
else:
outputs, _ = tf.nn.dynamic_rnn(cell, inputs=inputs, dtype=tf.float32)
return outputs
def bn(inputs,
axis=-1,
is_training=True,
activation_fn=None,
scope='bn',
reuse=None):
'''
:param inputs: A 3-D tensor. [N, T, D]. (By default axis=-1)
:param axis: An integer. Do normalization in axis.
:param is_training: Boolean.
:param activation_fn: TF activation function or None.
:param scope: String. Scope name.
:param reuse: False or True or tf.AUTO_REUSE.
:return: A 3-D tensor. [N, T, D].
'''
with tf.variable_scope(scope, reuse=reuse):
outputs = tf.layers.batch_normalization(inputs, axis=axis, training=is_training)
if activation_fn != None:
outputs = activation_fn(outputs)
return outputs
def conv1d_banks(inputs,
K=16,
size=None,
is_training=True,
scope='conv1d_banks',
reuse=None):
'''
:param inputs: A 3-D tensor. [N, T, D]
:param K: An integer. conv1d bank nums.
:param size: An integer. Total banks filter nums.
:param is_training: Boolean.
:param scope: String. Scope name.
:param reuse: False or True or tf.AUTO_REUSE.
:return:
'''
if size is None:
size = inputs.get_shape().as_list()[-1]
with tf.variable_scope(scope, reuse=reuse):
outputs = conv1d(inputs, filter_nums=size, kernel_size=1, scope='conv1d_1')
for i in range(2, K+1):
_outputs = conv1d(inputs, filter_nums=size, kernel_size=i, scope=f'conv1d_{i}')
outputs = tf.concat((outputs, _outputs), axis=-1)
outputs = bn(outputs, is_training=is_training, scope='bn', reuse=reuse)
return outputs
def duration_model(inputs, size: int, is_training=True, scope='duration', reuse=None):
'''
:param inputs: A 3-D tensor. [N, T, D]
:param size: An integer.
:param is_training: Boolean. Training or not.
:param scope: String. Scope name.
:param reuse: False or True or tf.AUTO_REUSE.
:return: [N, T, size].
'''
with tf.variable_scope(scope, reuse=reuse):
outputs = tf.layers.dense(inputs, units=hp.DUR_IN_DIM//2, activation=tf.nn.relu, name='fc_1')
outputs = tf.layers.dropout(outputs, rate=hp.DROPOUT_RATE, training=is_training, name='dropout_1')
for i in range(2, hp.DUR_FC_NUM+1):
outputs = tf.layers.dense(outputs, units=hp.DUR_IN_DIM//2, activation=tf.nn.relu, name=f'fc_{i}')
outputs = tf.layers.dropout(outputs, rate=hp.DROPOUT_RATE, training=is_training, name=f'dropout_{i}')
outputs = tf.layers.dense(outputs, units=size, name='fc_outputs')
return outputs
def acoustic_model(inputs, size: int, is_training=True, scope='acoustic', reuse=None):
'''
:param inputs: A 3-D tensor. [N, T, D].
:param size: An integer.
:param is_training: Boolean. Training or not.
:param scope: String. Scope name.
:param reuse: False or True or tf.AUTO_REUSE.
:return: A 3-D tensor. [N, T, size]
'''
with tf.variable_scope(scope, reuse=reuse):
prenet_outputs = prenet(inputs, [hp.SYN_IN_DIM, hp.SYN_IN_DIM//2], is_training, scope='prenet')
outputs = conv1d_banks(prenet_outputs, hp.SYN_K, hp.SYN_IN_DIM//2, is_training, scope='conv1d_banks')
outputs = tf.layers.max_pooling1d(outputs, pool_size=2, strides=1, padding='SAME')
outputs = conv1d(outputs, hp.SYN_IN_DIM//2, kernel_size=3, scope='fixed_conv1d_1')
outputs = bn(outputs, axis=-1, is_training=is_training, scope='fixed_bn_1')
outputs = conv1d(outputs, hp.SYN_IN_DIM//2, kernel_size=3, scope="fixed_conv1d_2")
outputs = bn(outputs, axis=-1, is_training=is_training, scope='fixed_bn_2')
outputs += prenet_outputs
for i in range(hp.SYN_HIAHWAY_BLOCK):
outputs = highway(outputs, num_units=hp.SYN_IN_DIM//2, scope=f'highwaynet_{i}')
outputs = gru(outputs, hp.SYN_IN_DIM//2, False, scope='gru')
outputs = tf.layers.dense(outputs, units=size, name='fc_outputs')
return outputs