-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
79 lines (64 loc) · 2.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import random
import numpy as np
def load_csv(filename, delimiter=',', select=(lambda x:True), skiprows=0, dtype=float):
def iter_func():
with open(filename, 'r') as infile:
for _ in range(skiprows):
next(infile)
for line in infile:
line = line.rstrip().split(delimiter)
if select(line):
#yield line[col]
for item in line:
yield dtype(item)
load_csv.rowlength = len(line)
data = np.fromiter(iter_func(), dtype=dtype)
data = data.reshape((-1, load_csv.rowlength))
return data
class TimesliceSelect:
def __init__(self, i):
self.step = 30*60*10
self.min = i*self.step
self.max = (i+1)*self.step
def select(self, line):
return int(line[1]) >= self.min and int(line[1]) < self.max
random.seed()
def random_select(line):
return random.randint(0,3)>2
class Evaluator:
def __init__(self):
self.visit_threshold = 450
self.scores = []
self.max_score = 15000
self.divider = 40
def normalize(self, score):
#if score < self.max_score:
return score
#else:
# return self.max_score+(score-self.max_score)/self.divider
def visits(self, times):
def time(self, times):
def evaluate(self, times):
def compute_visits(self, list):
players_lists = {}
for feature in list:
player, time = feature
if player in players_lists.keys():
players_lists[player].append(time)
else:
players_lists[player] = [time]
score = 0
for player in players_lists.keys():
times = players_lists[player]
times.sort()
n_visits = 1
new_differences = []
for i in range(1, len(times)):
new_differences.append(times[i] - times[i-1])
if (times[i] - times[i-1]) > self.visit_threshold:
n_visits += 0
else:
n_visits += (times[i] - times[i-1])
score += n_visits
self.scores.append(score)
return self.normalize(score)