|
| 1 | +import math |
| 2 | +import heapq |
| 3 | +import matplotlib.pyplot as plt |
| 4 | +import time |
| 5 | + |
| 6 | +show_animation = False |
| 7 | + |
| 8 | + |
| 9 | +class Node: |
| 10 | + |
| 11 | + def __init__(self, x, y, cost, pind): |
| 12 | + self.x = x |
| 13 | + self.y = y |
| 14 | + self.cost = cost |
| 15 | + self.pind = pind |
| 16 | + |
| 17 | + def __str__(self): |
| 18 | + return str(self.x) + "," + str(self.y) + "," + str(self.cost) + "," + str(self.pind) |
| 19 | + |
| 20 | + |
| 21 | +def calc_final_path(ngoal, closedset, reso): |
| 22 | + # generate final course |
| 23 | + rx, ry = [ngoal.x * reso], [ngoal.y * reso] |
| 24 | + pind = ngoal.pind |
| 25 | + while pind != -1: |
| 26 | + n = closedset[pind] |
| 27 | + rx.append(n.x * reso) |
| 28 | + ry.append(n.y * reso) |
| 29 | + pind = n.pind |
| 30 | + |
| 31 | + return rx, ry |
| 32 | + |
| 33 | + |
| 34 | +def dp_planning(sx, sy, gx, gy, ox, oy, reso, rr): |
| 35 | + """ |
| 36 | + sx: start x position [m] |
| 37 | + sy: start y position [m] |
| 38 | + gx: goal x position [m] |
| 39 | + gx: goal x position [m] |
| 40 | + ox: x position list of Obstacles [m] |
| 41 | + oy: y position list of Obstacles [m] |
| 42 | + reso: grid resolution [m] |
| 43 | + rr: robot radius[m] |
| 44 | + """ |
| 45 | + |
| 46 | + nstart = Node(round(sx / reso), round(sy / reso), 0.0, -1) |
| 47 | + ngoal = Node(round(gx / reso), round(gy / reso), 0.0, -1) |
| 48 | + ox = [iox / reso for iox in ox] #divides all of ox by the resolution |
| 49 | + oy = [ioy / reso for ioy in oy] #divides all of oy by the resolution |
| 50 | + |
| 51 | + obmap, minx, miny, maxx, maxy, xw, yw = calc_obstacle_map(ox, oy, reso, rr) |
| 52 | + #t1=time.perf_counter() |
| 53 | + #defines movement in terms of relative positions and gives the cost of each movement |
| 54 | + motion = get_motion_model() |
| 55 | + |
| 56 | + #initialising both the yet to visit and visited list |
| 57 | + openset, closedset = dict(), dict() |
| 58 | + openset[calc_index(ngoal, xw, minx, miny)] = ngoal |
| 59 | + pq = [] |
| 60 | + pq.append((0, calc_index(ngoal, xw, minx, miny))) |
| 61 | + |
| 62 | + while 1: |
| 63 | + if not pq: |
| 64 | + break |
| 65 | + cost, c_id = heapq.heappop(pq) #c_id is the current index, heapop returns the smallest data element from the heap pq |
| 66 | + #popping current node out of openset into closed set |
| 67 | + if c_id in openset: |
| 68 | + current = openset[c_id] |
| 69 | + closedset[c_id] = current |
| 70 | + openset.pop(c_id) |
| 71 | + else: |
| 72 | + continue |
| 73 | + |
| 74 | + # show graph |
| 75 | + if show_animation: # pragma: no cover |
| 76 | + plt.plot(current.x * reso, current.y * reso, "xc") |
| 77 | + # for stopping simulation with the esc key. |
| 78 | + plt.gcf().canvas.mpl_connect('key_release_event', |
| 79 | + lambda event: [exit(0) if event.key == 'escape' else None]) |
| 80 | + if len(closedset.keys()) % 10 == 0: |
| 81 | + plt.pause(0.001) |
| 82 | + |
| 83 | + # Remove the item from the open set |
| 84 | + |
| 85 | + # expand search grid based on motion model, generates child nodes from adjacent squares |
| 86 | + for i, _ in enumerate(motion): |
| 87 | + node = Node(current.x + motion[i][0], |
| 88 | + current.y + motion[i][1], |
| 89 | + current.cost + motion[i][2], c_id) |
| 90 | + n_id = calc_index(node, xw, minx, miny) |
| 91 | + #making sure not to use nodes already visited |
| 92 | + if n_id in closedset: |
| 93 | + continue |
| 94 | + #checking node is within boundary and not in obstacle |
| 95 | + if not verify_node(node, obmap, minx, miny, maxx, maxy): |
| 96 | + continue |
| 97 | + |
| 98 | + if n_id not in openset: |
| 99 | + openset[n_id] = node # Discover a new node |
| 100 | + heapq.heappush( |
| 101 | + pq, (node.cost, calc_index(node, xw, minx, miny))) |
| 102 | + else: |
| 103 | + if openset[n_id].cost >= node.cost: |
| 104 | + # This path is the best until now. record it! |
| 105 | + openset[n_id] = node |
| 106 | + heapq.heappush( |
| 107 | + pq, (node.cost, calc_index(node, xw, minx, miny))) |
| 108 | + |
| 109 | + rx, ry = calc_final_path(closedset[calc_index( |
| 110 | + nstart, xw, minx, miny)], closedset, reso) |
| 111 | + #t2=time.perf_counter() |
| 112 | + #print(f"Path Planner in {t2 - t1:0.4f} seconds") |
| 113 | + return rx, ry, closedset |
| 114 | + |
| 115 | + |
| 116 | +def calc_heuristic(n1, n2): |
| 117 | + w = 1.0 # weight of heuristic |
| 118 | + d = w * math.sqrt((n1.x - n2.x)**2 + (n1.y - n2.y)**2) |
| 119 | + return d |
| 120 | + |
| 121 | +#Making sure the node is within range and not in an obstacle |
| 122 | +def verify_node(node, obmap, minx, miny, maxx, maxy): |
| 123 | + |
| 124 | + if node.x < minx: |
| 125 | + return False |
| 126 | + elif node.y < miny: |
| 127 | + return False |
| 128 | + elif node.x >= maxx: |
| 129 | + return False |
| 130 | + elif node.y >= maxy: |
| 131 | + return False |
| 132 | + #Need to subtract minx and miny to scale to the obmap indicies correctly |
| 133 | + if obmap[int(round(node.x-minx))][int(round(node.y-miny))]: |
| 134 | + return False |
| 135 | + |
| 136 | + return True |
| 137 | + |
| 138 | +#function determines whether position would cause a collision with an obstacle |
| 139 | +def calc_obstacle_map(ox, oy, reso, vr): |
| 140 | + |
| 141 | + minx = int(round(min(ox))) |
| 142 | + miny = int(round(min(oy))) |
| 143 | + maxx = int(round(max(ox))) |
| 144 | + maxy = int(round(max(oy))) |
| 145 | + |
| 146 | + xwidth = round(maxx - minx) |
| 147 | + ywidth = round(maxy - miny) |
| 148 | + # obstacle map generation, determines which positions would cause a collision |
| 149 | + # with an obstacle given the device's radius |
| 150 | + obmap = [[False for i in range(ywidth)] for i in range(xwidth)] |
| 151 | + #for ix in range(xwidth): |
| 152 | + # x = ix + minx #the current x position |
| 153 | + # for iy in range(ywidth): |
| 154 | + # y = iy + miny #the current y position |
| 155 | + # # print(x, y) |
| 156 | + # for iox, ioy in zip(ox, oy): |
| 157 | + # d = math.sqrt((iox - x)**2 + (ioy - y)**2) #distance from current x and y position to obstacle |
| 158 | + # if d <= vr / reso: |
| 159 | + # obmap[ix][iy] = True |
| 160 | + # break |
| 161 | + obmap_motion = obmap_motion_model() |
| 162 | + |
| 163 | + for iox, ioy in zip(ox, oy): |
| 164 | + rox=iox |
| 165 | + roy=ioy |
| 166 | + iox=int(round(iox)) |
| 167 | + ioy=int(round(ioy)) |
| 168 | + |
| 169 | + for i, _ in enumerate(obmap_motion): |
| 170 | + adjind = [iox + obmap_motion[i][0], |
| 171 | + ioy + obmap_motion[i][1]] |
| 172 | + |
| 173 | + if not verify_obmap(adjind, minx, miny, maxx, maxy): |
| 174 | + continue |
| 175 | + |
| 176 | + d = math.sqrt((rox - adjind[0])**2 + (roy - adjind[1])**2) |
| 177 | + if d <= vr / reso: |
| 178 | + ix = adjind[0] - minx |
| 179 | + iy = adjind[1] - miny |
| 180 | + obmap[ix][iy] = True |
| 181 | + |
| 182 | + |
| 183 | + return obmap, minx, miny, maxx, maxy, xwidth, ywidth |
| 184 | + |
| 185 | + |
| 186 | +def calc_index(node, xwidth, xmin, ymin): |
| 187 | + return (node.y - ymin) * xwidth + (node.x - xmin) |
| 188 | + |
| 189 | +#function just giving the option to move in 8 directions(up, down, diagonally, etc..) |
| 190 | +#and the costs of moving in those directions |
| 191 | +def get_motion_model(): |
| 192 | + # dx, dy, cost |
| 193 | + motion = [[1, 0, 1], |
| 194 | + [0, 1, 1], |
| 195 | + [-1, 0, 1], |
| 196 | + [0, -1, 1], |
| 197 | + [-1, -1, math.sqrt(2)], |
| 198 | + [-1, 1, math.sqrt(2)], |
| 199 | + [1, -1, math.sqrt(2)], |
| 200 | + [1, 1, math.sqrt(2)]] |
| 201 | + |
| 202 | + return motion |
| 203 | + |
| 204 | +# function needs to be changed depending on how the resolution and car radius change |
| 205 | +def obmap_motion_model(): |
| 206 | + # dx, dy |
| 207 | + obmap_motion = [[0, 0], |
| 208 | + [1, 0], |
| 209 | + [2, 0], |
| 210 | + [0, 1], |
| 211 | + [0, 2], |
| 212 | + [-1, 0], |
| 213 | + [-2, 0], |
| 214 | + [0, -1], |
| 215 | + [0, -2], |
| 216 | + [-1, -1], |
| 217 | + [-1, 1], |
| 218 | + [1, -1], |
| 219 | + [1, 1], |
| 220 | + [1, 2], |
| 221 | + [2, 1], |
| 222 | + [2, 2], |
| 223 | + [-1, 2], |
| 224 | + [-2, 1], |
| 225 | + [-2, 2], |
| 226 | + [1, -2], |
| 227 | + [2, -1], |
| 228 | + [2, -2], |
| 229 | + [-1, -2], |
| 230 | + [-2, -1], |
| 231 | + [-2, -2]] |
| 232 | + |
| 233 | + return obmap_motion |
| 234 | + |
| 235 | + |
| 236 | +def verify_obmap(adjind, minx, miny, maxx, maxy): |
| 237 | + |
| 238 | + if adjind[0] < minx: |
| 239 | + return False |
| 240 | + elif adjind[1] < miny: |
| 241 | + return False |
| 242 | + elif adjind[0] >= maxx: |
| 243 | + return False |
| 244 | + elif adjind[1] >= maxy: |
| 245 | + return False |
| 246 | + |
| 247 | + return True |
| 248 | + |
| 249 | + |
| 250 | +def main(): |
| 251 | + print(__file__ + " start!!") |
| 252 | + |
| 253 | + # start and goal position |
| 254 | + sx = 10.0 # [m] |
| 255 | + sy = 10.0 # [m] |
| 256 | + gx = 50.0 # [m] |
| 257 | + gy = 50.0 # [m] |
| 258 | + grid_size = 2.0 # [m] |
| 259 | + robot_size = 1.0 # [m] |
| 260 | + |
| 261 | + ox, oy = [], [] |
| 262 | + |
| 263 | + for i in range(60): |
| 264 | + ox.append(i) |
| 265 | + oy.append(0.0) |
| 266 | + for i in range(60): |
| 267 | + ox.append(60.0) |
| 268 | + oy.append(i) |
| 269 | + for i in range(61): |
| 270 | + ox.append(i) |
| 271 | + oy.append(60.0) |
| 272 | + for i in range(61): |
| 273 | + ox.append(0.0) |
| 274 | + oy.append(i) |
| 275 | + for i in range(40): |
| 276 | + ox.append(20.0) |
| 277 | + oy.append(i) |
| 278 | + for i in range(40): |
| 279 | + ox.append(40.0) |
| 280 | + oy.append(60.0 - i) |
| 281 | + |
| 282 | + if show_animation: # pragma: no cover |
| 283 | + plt.plot(ox, oy, ".k") |
| 284 | + plt.plot(sx, sy, "xr") |
| 285 | + plt.plot(gx, gy, "xb") |
| 286 | + plt.grid(True) |
| 287 | + plt.axis("equal") |
| 288 | + |
| 289 | + rx, ry, _ = dp_planning(sx, sy, gx, gy, ox, oy, grid_size, robot_size) |
| 290 | + |
| 291 | + if show_animation: # pragma: no cover |
| 292 | + plt.plot(rx, ry, "-r") |
| 293 | + plt.show() |
| 294 | + |
| 295 | + |
| 296 | +if __name__ == '__main__': |
| 297 | + show_animation = True |
| 298 | + main() |
0 commit comments