-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPoint_Cloud.py
183 lines (138 loc) · 6.74 KB
/
Point_Cloud.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import numpy as np
import py
from scipy import interpolate
from scipy import io
import sys
import traceback
import copy
import time
class mapper:
num_coordinate = 3
xRange = [-8, 8]
yRange = [-8, 8]
zRange = [-0.5, 0.5]
voxelSize = 0.02
voxelMaxWeight = 2000
voxelWeightDecay = 1
xDivisions = int((xRange[1] - xRange[0]) / voxelSize)
yDivisions = int((yRange[1] - yRange[0]) / voxelSize)
zDivisions = int((zRange[1] - zRange[0]) / voxelSize)
def __init__(self):
self.xBins = np.linspace(self.xRange[0], self.xRange[1], self.xDivisions)
self.yBins = np.linspace(self.yRange[0], self.yRange[1], self.yDivisions)
self.zBins = np.linspace(self.zRange[0], self.zRange[1], self.zDivisions)
self.grid = np.zeros((self.xDivisions, self.yDivisions, self.zDivisions), dtype=np.float32)
self.interpFunc = interpolate.RegularGridInterpolator( (self.xBins, self.yBins, self.zBins),
self.grid, method = 'linear',
bounds_error = False,
fill_value = np.nan )
# --------------------------------------------------------------------------
# frame_to_global_points
# param frame - (3,X,Y) matrix of coordinates from d435 camera
# param pos - [x,y,z] offset cooridnates
# param r - scipy local->global rotation object
# return Null
# --------------------------------------------------------------------------
def local_to_global_points(self, local_points, pos, r):
# Transform into global coordinate frame
points_global = r.apply(local_points)
points_global = np.add(points_global, pos)
return points_global
# --------------------------------------------------------------------------
# updateMap
# param pos - (N,3) list of points to add to the map
# param rot -
# return Null
# --------------------------------------------------------------------------
def update(self, points, pos, rot):
# Add to map
points = self.local_to_global_points(points, pos, rot)
self.updateMap(points, pos)
self.interpFunc.values = self.grid
def digitizePoints(self, points):
xSort = np.digitize(points[:, 0], self.xBins) -1 #Facing Directly Forward from the camera
ySort = np.digitize(points[:, 1], self.yBins) -1 #Direction to the right of the camera, facing away from it
zSort = np.digitize(points[:, 2], self.zBins) -1 #Direction straight up from the camera
return [xSort, ySort, zSort]
# --------------------------------------------------------------------------
# updateMap
# param points - (N,3) list of points to qadd to the map
# return Null
# --------------------------------------------------------------------------
def updateMap(self, points, pos):
# Update map
gridPoints = self.digitizePoints(points)
np.add.at(self.grid, gridPoints, 1)
# Decay map where map has not reached maxWeight
self.grid = np.where(self.grid < self.voxelMaxWeight,
self.grid - self.voxelWeightDecay, #If True
self.grid) #If False
# Keep all map values below voxelMaxWeight
self.grid = np.clip(self.grid, a_min=0, a_max=self.voxelMaxWeight)
# --------------------------------------------------------------------------
# queryMap
# param queryPoints - (N,3) list of points to query against map
# return (N) list of risk for each point
# --------------------------------------------------------------------------
def queryMap(self, queryPoints):
return self.interpFunc(queryPoints)
def saveToMatlab(self, filename):
io.savemat(filename, mdict=dict(map=self.grid), do_compression=False)
if __name__ == "__main__":
#def mainpc():
# from modules.realsense
import T265_Tracking_Camera as t265
import D435_Depth_Camera as d435
import Telemetry as telemetry
import cv2
import base64
import time
import threading
t265Obj = t265.rs_t265()
d435Obj = d435.rs_d435(framerate=30, width=480, height=270)
mapObj = mapper()
with t265Obj, d435Obj:
try:
while True:
t13 = time.perf_counter()
# Get frames of data - points and global 6dof
pos, r, conf, _ = t265Obj.get_frame()
frame, rgbImg = d435Obj.getFrame()
points = d435Obj.deproject_frame(frame)
mapObj.update(points, pos, r)
depth = cv2.applyColorMap(cv2.convertScaleAbs(frame, alpha=0.03), cv2.COLORMAP_JET)
cv2.imshow('frame', depth)
cv2.waitKey(1)
#print(conf)
try:
x = np.digitize(pos[0], mapObj.xBins) - 1
y = np.digitize(pos[1], mapObj.yBins) - 1
z = np.digitize(pos[2], mapObj.zBins) - 1
z2= np.digitize(pos[2], mapObj.zBins) - 2
z3= np.digitize(pos[2], mapObj.zBins) - 0
gridSlice1=copy.copy(mapObj.grid[:,:,z])
gridSlice2=copy.copy(mapObj.grid[:,:,z2])
gridSlice3=copy.copy(mapObj.grid[:,:,z3])
gridSlice = np.sum([gridSlice1, gridSlice2, gridSlice3], axis=0)
grid = gridSlice
empty = np.zeros((mapObj.xDivisions, mapObj.yDivisions),dtype=np.float32)
img = cv2.merge((grid, empty, empty))
img = cv2.transpose(img)
img = cv2.circle(img, (x, y), 5, (0, 1, 0), 2)
vec = np.asarray([20, 0, 0])
vec = r.apply(vec) # Aero-ref -> Aero-body
vec[0] += x
vec[1] += y
img = cv2.line(img, (x, y), (int(vec[0]), int(vec[1])), (0, 0, 1), 2)
img = cv2.resize(img, (540, 540))
cv2.imshow('map', img)
cv2.waitKey(1)
t16 = time.perf_counter()
print(f"get frames, deproject and update map and visualise: {t16 - t13:0.4f} seconds")
# time.sleep(0.5)
except KeyboardInterrupt:
raise KeyboardInterrupt
except:
traceback.print_exc(file=sys.stdout)
except KeyboardInterrupt:
pass