-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathft_read_atlas.m
1018 lines (920 loc) · 30.1 KB
/
ft_read_atlas.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function atlas = ft_read_atlas(filename, varargin)
% FT_READ_ATLAS reads an template/individual segmentation or parcellation from disk.
% The volumetric segmentation or the surface-based parcellation can either represent
% a template atlas (e.g. AAL or the Talairach Daemon), it can represent an
% individualized atlas (e.g. obtained from FreeSurfer) or it can represent an
% unlabeled parcellation/segmentation obtained from an individual's DTi, anatomical,
% or resting state fMRI scan.
%
% Use as
% atlas = ft_read_atlas(filename, ...)
% or
% atlas = ft_read_atlas({filenamelabels, filenamemesh}, ...)
%
% Additional options should be specified in key-value pairs and can include
% 'format' = string, see below
% 'unit' = string, e.g. 'mm' (default is to keep it in the native units of the file)
% 'map' = string, 'maxprob' (default), or 'prob', for FSL-based atlases, providing
% either a probabilistic segmentation or a maximum a posterior probability map
% 'labelfile' = string, point to a (generic) text or xml file for interpretation of the values in the atlas
%
% For individual surface-based atlases from FreeSurfer you should specify two
% filenames as a cell-array: the first points to the file that contains information
% with respect to the parcels' labels, the second points to the file that defines the
% mesh on which the parcellation is defined.
%
% The 'format' variable, if not specified, will be determined automatically. In general
% it will not be needed to specify it. The following formats are supported:
%
% Volumetric atlases based on a (gzipped) nifti-file with an companion txt-file for interpretation
% 'aal' assumes filename starting with 'ROI_MNI'
% 'brainnetome' assumes companion lookuptable txt-file starting with 'Brainnetome Atlas'
% 'simnibs_v4' assumes filename starting with 'final_tissues', with companion freesurfer-style lookuptable txt-file
% 'wfu' assumes specific formatting of companion lookuptable txt-file
%
% Volumetric atlases based on a (gzipped) nifti-file with hard coded assumption on the labels
% 'yeo7'
% 'yeo17'
%
% Volumetric atlases based on a folder with (gzipped) nifti-files with a companion xml-file for interpretation
% 'fsl' assumes path to folder with data mentioned in the xml-file. Use xml-file as filename
%
% Volumetric atlases based on the freesurfer mgz format with standard lookuptable txt-file for interpretation
% 'freesurfer_volume' assumes the freesurfer LUT file for interpretation, and assumes aparc or aseg in the
% filename, used for subject-specific parcellations
%
% Volumetric atlases based on the afni software
% 'afni' assumes filename containing BRIK or HEAD, assumes generic interpretation of the labels
% for the TTatlas+tlrc, or otherwise the interpretation should be in the file
%
% Volumetric atlas based on the spm_anatomy toolbox
% 'spm_anatomy' pair of .hdr/.img files, and an associated mat-file for the interpretation
% Specify the associated mat-file with MPM in filename
%
% Surface based atlases, requiring a pair of files, containing the labels, and the associated geometry
% 'caret_label' hcp-workbench/caret style .gii, with .label. in filename, requires additional file describing the geometry
% 'freesurfer_surface' freesurfer style annotation file, requires additional file describing the geometry
%
% Miscellaneous formats
% 'mat' mat-file, with FieldTrip style struct, other matlab data that FieldTrip knows to handle, can also be
% Brainstorm derived surfaces
% 'vtpm'
%
% For volume data for whicth the format cannot be automatically detected, or if the volume data does not have a companion file
% for the interpretation of the labels, a list of 'fake' labels will be generated.
%
% The output atlas will be represented as structure according to FT_DATATYPE_SEGMENTATION or
% FT_DATATYPE_PARCELLATION.
%
% The 'lines' and the 'colorcube' colormaps may be useful for plotting the different
% patches, for example using FT_PLOT_MESH, or FT_SOURCEPLOT.
%
% See also FT_READ_MRI, FT_READ_HEADSHAPE, FT_PREPARE_SOURCEMODEL, FT_SOURCEPARCELLATE, FT_PLOT_MESH
% Copyright (C) 2005-2019, Robert Oostenveld, Ingrid Nieuwenhuis, Jan-Mathijs Schoffelen, Arjen Stolk
% Copyright (C) 2023, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% deal with multiple filenames, if the geometry and labels are stored
% in different files, as with freesurfer/caret
if isa(filename, 'cell')
if numel(filename)==2
filenamemesh = filename{2};
filename = filename{1};
else
ft_error('with multiple filenames, only 2 files are allowed');
end % if precisely two input files
end % iscell
% optionally get the data from an URL and make a temporary local copy
filename = fetch_url(filename);
[p, f, x] = fileparts(filename);
labelfile = ft_getopt(varargin, 'labelfile', []);
ftype = ft_filetype(filename);
% if the original file was a .gz
if isequal(x,'.gz')
[p, f, x] = fileparts(filename(1:end-3));
end
% do an educated guess of the format based on the input, ensure that the
% required additional functions are available, and specify the companion labelfile
if contains(filename, 'BRIK') || contains(filename, 'HEAD')
% the above is needed to correctly detect zipped files
ft_hastoolbox('afni', 1);
% this is robust for both compressed or uncompressed afni atlases.
format = 'afni';
elseif startsWith(ftype, 'nifti')
% first handle the ones for which the labels are implicit in the filename
if contains(f, 'Yeo2011_7Networks')
% assume to be conform the shared atlas, with hardcoded index-to-label mapping
format = 'yeo7';
elseif contains(f, 'Yeo2011_17Networks')
% assume to be conform the shared atlas, with hardcoded index-to-label mapping
format = 'yeo17';
end
% try for different conventions of the naming of a potential companion labelfile
if isempty(labelfile)
labelfile = fullfile(p, sprintf('%s.txt', f));
if ~exist(labelfile, 'file')
% in case the volume was zipped, and the txt only replaced the gz
labelfile = fullfile(p, sprintf('%s.nii.txt', f));
end
if ~exist(labelfile, 'file')
labelfile = ''; % revert back to empty
end
end
if ~isempty(labelfile)
% do a quick check on the companion labelfile to specify the format
fid = fopen_or_error(labelfile, 'rt');
l1 = fgetl(fid);
if strcmp(l1(1),'[') && strcmp(l1(end),']')
% specific to this one is that some of the wakeforest atlases contain non-human data, so no fixed coordsys can be assumed
format = 'wfu';
coordsys = 'unknown';
elseif strcmp(l1,'Brainnetome Atlas')
% specific to this one is the coordinate system it seems
format = 'brainnetome';
coordsys = 'mni'; % apparently the image is in radiological convention,
% so the voxel-axes are left-handed. The even valued parcels should end
% up in the right hemisphere
elseif contains(filename, 'ROI_MNI') || contains(filename, 'AAL')
% newer versions of AAL also exist with a companion .xml file, this is not yet supported
format = 'aal';
coordsys = 'mni';
end
fclose(fid);
end
if contains(filename, 'final_tissues')
ft_hastoolbox('freesurfer', 1); % required to read lookuptable
% assume to be from SimNIBS version 4
format = 'simnibs_v4';
labelfile = fullfile(p, sprintf('%s_LUT.txt', f));
end
if isempty(labelfile)
% just a nifti file without interpretation of labels
format = 'nifti_no_label';
end
elseif isequal(ftype, 'freesurfer_mgz') && contains(f, 'aparc') || contains(f, 'aseg')
ft_hastoolbox('freesurfer', 1);
% individual volume based segmentation from freesurfer
format = 'freesurfer_volume';
if isempty(labelfile)
% use the version for freesurfer that is in fieldtrip/external/freesurfer
[ftver, ftpath] = ft_version;
labelfile = fullfile(ftpath, 'external/freesurfer', 'FreeSurferColorLUT.txt');
end
elseif isequal(ftype, 'freesurfer_annot')
ft_hastoolbox('freesurfer', 1);
% individual volume based segmentation from freesurfer
format = 'freesurfer_surface';
elseif isequal(ftype, 'caret_label')
ft_hastoolbox('gifti', 1);
% this is a gifti file that contains both the values for a set of vertices as well as the labels.
format = 'caret_label';
elseif contains(filename, 'MPM.mat')
ft_hastoolbox('spm8up', 1);
% assume to be from the spm_anatomy toolbox
format = 'spm_anatomy';
elseif exist(fullfile(p, [f '_MPM.mat']), 'file')
ft_warning('please specify the corresponding MPM.mat file as the filename');
filename = fullfile(p, [f '_MPM.mat']); % update the filename
[p, f, x] = fileparts(filename);
ft_hastoolbox('spm8up', 1);
% assume to be from the spm_anatomy toolbox
format = 'spm_anatomy';
elseif strcmp(x, '.xml')
ft_hastoolbox('gifti', 1); % required to read the xml
% fsl-style atlas, this is assumed to consist of an .xml file that specifies the labels, as well as a pointer
% to the file/folder with the volume data.
format = 'fsl';
labelfile = fullfile(p, sprintf('%s.xml',f));
elseif strcmp(x, '.mat')
% mat-file to contain a well-defined structure
format = 'mat';
else
format = 'unknown';
end
% get the optional input arguments
fileformat = ft_getopt(varargin, 'format', format);
unit = ft_getopt(varargin, 'unit');
switch fileformat
case {'aal' 'brainnetome' 'freesurfer_volume' 'nifti_no_label' 'simnibs_v4' 'wfu'}
atlas = ft_read_mri(filename, 'outputfield', 'tissue');
% interpret the format specific labelfile
if isequal(fileformat, 'aal')
% The labelfile is a combination of nii+txt file, where the txt file may contain three columns like this
% FAG Precentral_L 2001
% FAD Precentral_R 2002
% ...
fid = fopen_or_error(labelfile, 'rt');
C = textscan(fid, '%s%s%d');
lab = C{2};
idx = C{3};
fclose(fid);
elseif isequal(fileformat, 'wfu')
% the download from http://fmri.wfubmc.edu comes with pairs of nii and txt files
% the text file looks like this, with tabs between the colums
% the section at the end with three times 191 does not always exist
%
% [ TD Labels]
% 53 Angular Gyrus 191 191 191
% 39 Anterior Cingulate 191 191 191
% ...
fid = fopen_or_error(labelfile, 'rt');
C = textscan(fid, '%d%s%*[^\n]', 'HeaderLines', 1, 'Delimiter', '\t');
lab = C{2};
idx = C{1};
fclose(fid);
elseif any(strcmp(fileformat, {'simnibs_v4' 'freesurfer_volume'}))
[idx, lab, rgba] = read_fscolorlut(labelfile);
lab = cellstr(lab);
elseif isequal(fileformat, 'brainnetome')
% Brainnetome Atlas: L. Fan, et al.The Human Brainnetome Atlas: A New Brain Atlas Based on
% Connectional Architecture. Cereb Cortex 2016; 26 (8): 3508-3526. doi: 10.1093/cercor/bhw157
fid = fopen_or_error(labelfile, 'rt');
fgetl(fid); % this reads: 'Brainnetome Atlas'
lab = cell(246,1);
for i=1:246
lab{i,1}=fgetl(fid);
end
idx = (1:246)';
fclose(fid);
elseif isequal(fileformat, 'nifti_no_label')
% the file does not exist
ft_warning('cannot locate a labelfile, making default tissue labels');
idx = (1:max(atlas.tissue(:)))';
lab = cell(size(idx));
for i = 1:numel(lab)
% this is consistent with FIXSEGMENTATION
lab{i} = sprintf('tissue %d', i);
end
end
if ~isfield(atlas, 'coordsys') && exist('coordsys', 'var')
atlas.coordsys = coordsys;
end
uval = unique(atlas.tissue(:));
sel = find(ismember(idx, uval));
fprintf('subselecting %d labels from the total list of %d\n', numel(sel), numel(lab));
idx = idx(sel);
lab = lab(sel);
if exist('rgba', 'var')
tmprgba = rgba(sel,:);
rgba = zeros(0,4);
end
% remap the values in the data, if needed
if ~isequal(idx(:)', 1:numel(idx))
dat = zeros(atlas.dim);
cnt = 0;
for k = 1:numel(idx)
sel = atlas.tissue==idx(k);
if sum(sel(:))
cnt = cnt+1;
fprintf('re-indexing label %s to a value of %d (was %d)\n', lab{k}, cnt, idx(k));
dat(sel) = cnt;
tissuelabel{cnt,1} = lab{k};
if exist('rgba', 'var')
rgba(cnt,:) = tmprgba(k,:);
end
end
end
atlas.tissue = dat;
else
tissuelabel = lab;
end
atlas.tissuelabel = tissuelabel;
if exist('rgba', 'var'), atlas.rgba = rgba; end
% reduce memory footprint
if numel(tissuelabel)<=intmax('uint8')
atlas.tissue = uint8(atlas.tissue);
elseif numel(tissuelabel)<=intmax('uint16')
atlas.tissue = uint16(atlas.tissue);
elseif numel(tissuelabel)<=intmax('uint32')
atlas.tissue = uint32(atlas.tissue);
end
case 'afni'
tmp = ft_read_mri(filename);
if isfield(tmp, 'coordsys') && ~strcmp(tmp.coordsys, 'unknown')
coordsys = tmp.coordsys;
elseif isfield(tmp.hdr, 'TEMPLATE_SPACE') && ~isempty(tmp.hdr.TEMPLATE_SPACE)
coordsys = lower(tmp.hdr.TEMPLATE_SPACE); % FIXME this is based on AFNI conventions, not easily decodable by FT
else
coordsys = 'tal'; % FIXME could be different in other atlases
end
if isfield(tmp.hdr, 'ATLAS_LABEL_TABLE') && ~isempty(tmp.hdr.ATLAS_LABEL_TABLE)
if isfield(tmp.hdr.ATLAS_LABEL_TABLE(1), 'sb_label') && ~all(tmp.anatomy(:)==round(tmp.anatomy(:)))
% probabilistic atlas
isprobabilistic = true;
else
% indexed atlas
isprobabilistic = false;
end
labels = {tmp.hdr.ATLAS_LABEL_TABLE.struct}';
values = [tmp.hdr.ATLAS_LABEL_TABLE.val]';
elseif contains(filename, 'TTatlas+tlrc')
isprobabilistic = false;
[labels, values] = TTatlas_labels;
else
ft_error('no information about the atlas labels is available');
end
atlas = [];
atlas.dim = tmp.dim(1:3);
atlas.transform = tmp.transform;
atlas.hdr = tmp.hdr;
atlas.coordsys = coordsys;
nbrick = size(tmp.anatomy,4);
for k = 1:nbrick
if ~isprobabilistic
brickname = sprintf('brick%d',k-1);
brick = tmp.anatomy(:,:,:,k);
ulabel = setdiff(unique(brick(:)), 0);
label = cell(size(ulabel));
nlabel = numel(label);
% renumber the brick from 1:N and keep track of the label
newbrick = zeros(size(brick));
for i = 1:nlabel
sel = find(values==ulabel(i));
if ~isempty(sel)
label(i) = labels(sel);
newbrick(brick==ulabel(i)) = i;
else
ft_warning('the value %d does not have a label according to the ATLAS_LABEL_TABLE and will be discarded', ulabel(i));
end
end
atlas.(brickname) = newbrick;
atlas.([brickname 'label']) = label;
else
atlas.(labels{k}) = tmp.anatomy(:,:,:,values(k)+1); % indexing is 0-based in this case
end
end
case {'freesurfer_surface'}
if contains(filename, 'a2009s')
parcelfield = 'a2009s';
elseif contains(filename, 'aparc')
parcelfield = 'aparc';
elseif contains(filename, 'ba')
parcelfield = 'BA';
else
ft_error('unknown freesurfer parcellation type requested');
end
% read the labels
[v, p, c] = read_annotation(filename);
label = c.struct_names;
rgba = c.table(:,1:4);
rgb = c.table(:,5); % compound value that is used for the indexing in vector p
index = ((1:c.numEntries)-1)';
switch ft_filetype(filenamemesh)
case 'freesurfer_triangle_binary'
[pos, tri] = read_surf(filenamemesh);
% ensure the triangles to be 1-indexed
if min(tri(:))==0 && max(tri(:))==size(pos,1)-1
tri = tri+1;
end
bnd.pos = pos;
bnd.tri = tri;
reindex = true;
otherwise
ft_error('unsupported fileformat for surface mesh');
end
% check the number of vertices
if size(bnd.pos,1) ~= numel(p)
ft_error('the number of vertices in the mesh does not match the number of elements in the parcellation');
end
% reindex the parcels, if needed: I am not fully sure about this, but the caret
% label files seem to have the stuff numbered with normal numbers, with unknown
% being -1. assuming them to be in order;
if reindex
% this is then freesurfer convention, coding in rgb
newp = zeros(size(p));
for k = 1:numel(label)
newp(p==rgb(k)) = index(k)+1;
end
else
uniquep = unique(p);
if uniquep(1)<0
p(p<0) = 0;
end
newp = p;
end
atlas = [];
atlas.pos = bnd.pos;
atlas.tri = bnd.tri;
atlas.(parcelfield) = newp;
atlas.([parcelfield, 'label']) = label;
atlas.rgba = rgba;
atlas = ft_determine_units(atlas);
case 'caret_label'
g = gifti(filename);
rgba = [];
if isfield(g, 'labels')
label = g.labels.name(:);
key = g.labels.key(:);
if isfield(g.labels, 'rgba')
rgba = g.labels.rgba; % I'm not sure whether this always exists
end
else
label = g.private.label.name(:);
key = g.private.label.key(:);
if isfield(g.private.label, 'rgba')
rgba = g.private.label.rgba; % I'm not sure whether this always exists
end
end
%label = g.private.label.name; % provides the name of the parcel
%key = g.private.label.key; % maps value to name
% Store each column in cdata as an independent parcellation, because
% each vertex can have multiple values in principle
atlas = [];
for k = 1:size(g.cdata,2)
tmporig = g.cdata(:,k);
tmpnew = nan(size(tmporig));
tmplabel = cell(0,1);
tmprgba = zeros(0,4);
cnt = 0;
for m = 1:numel(label)
sel = find(tmporig==key(m));
if ~isempty(sel)
cnt = cnt+1;
if any(strcmp(tmplabel,deblank(label{m})))
% one feature of a gifti can be that the same labels can exist (and
% are treated as a different parcel) while they should be the same
% parcel, i.e. when there's an empty space at the end of the label
val = find(strcmp(tmplabel, deblank(label{m})));
else
% add as a new label
tmplabel{end+1,1} = label{m};
if ~isempty(rgba), tmprgba(end+1,:) = rgba(m,:); end
val = cnt;
end
tmpnew(tmporig==key(m)) = val;
end
end
% there is some additional meta data that may be useful, but for now
% stick to the rather uninformative parcellation1/2/3 etc.
%
% if strcmp(g.private.data{k}.metadata(1).name, 'Name')
% parcelfield = fixname(g.private.data{k}.metadata(1).value);
% else
% ft_error('could not determine parcellation name');
% end
if size(g.cdata,2)>1
parcelfield = ['parcellation' num2str(k)];
else
parcelfield = 'parcellation';
end
atlas.(parcelfield) = tmpnew;
atlas.([parcelfield 'label']) = tmplabel;
if ~isempty(tmprgba), atlas.rgba = tmprgba; end
end
if exist('filenamemesh', 'var')
tmp = ft_read_headshape(filenamemesh);
atlas.pos = tmp.pos;
atlas.tri = tmp.tri;
atlas = ft_determine_units(atlas);
elseif ~isfield(atlas, 'coordsys')
atlas.coordsys = 'unknown';
end
case 'spm_anatomy'
% load the map, this is assumed to be the struct-array MAP
load(filename);
[p,f,e] = fileparts(filename);
mrifilename = fullfile(p,[strrep(f, '_MPM',''),'.img']);
atlas = ft_read_mri(mrifilename, 'dataformat', 'analyze_img', 'outputfield', 'tissue');
tissue = round(atlas.tissue); % I don't know why the values are non-integer
label = {MAP.name}';
idx = [MAP.GV]';
% check whether all labels are present
if numel(intersect(idx,unique(tissue(:))))<numel(idx)
fprintf('there are fewer labels in the volume than in the list\n');
end
% remap the values of the labels to run from 1-numel(idx)
newtissue = zeros(size(tissue));
for k = 1:numel(idx)
newtissue(tissue==idx(k)) = k;
end
atlas.tissue = newtissue;
atlas.tissuelabel = label;
atlas.coordsys = 'spm'; % I think this is safe to assume
clear tissue newtissue;
case 'fsl'
map = ft_getopt(varargin, 'map', 'maxprob');
switch map
case 'prob'
imagefile = 'imagefile';
case 'maxprob'
imagefile = 'summaryimagefile';
otherwise
error('unknown map requested');
end
ft_hastoolbox('gifti', 1);
hdr = xmltree(filename);
hdr = convert(hdr);
% get the full path
[p, f , x] = fileparts(filename);
mrifilename = sprintf('%s.nii.gz', hdr.header.images{1}.(imagefile));
if isequal(mrifilename(1), '/')
mrifilename = mrifilename(2:end); % remove first backslash to avoid error if no full path was given
end
% this uses the thresholded image
switch map
case 'maxprob'
atlas = ft_read_mri(fullfile(p, mrifilename), 'outputfield', 'tissue');
atlas.tissuelabel = hdr.data.label(:);
atlas.coordsys = 'mni';
case 'prob'
tmp = ft_read_mri(fullfile(p, mrifilename));
atlas = removefields(tmp, 'anatomy');
for m = 1:numel(hdr.data.label)
fn = strrep(hdr.data.label{m}, ' ' , '_');
fn = strrep(fn, '-', '_');
fn = strrep(fn, '(', '');
fn = strrep(fn, ')', '');
atlas.(fn) = tmp.anatomy(:,:,:,m);
if ~isa(atlas.(fn), 'double') && ~isa(atlas.(fn), 'single')
% ensure that the probabilistic values are either double or
% single precision, do single precision to save memory
atlas.(fn) = single(atlas.(fn));
end
if any(atlas.(fn)(:)>1) && all(atlas.(fn)(:)<=100)
% convert to probability values, assuming 100 to be max
atlas.(fn) = atlas.(fn)./100;
end
end
atlas.coordsys = 'mni';
atlas.dim = atlas.dim(1:3);
end
case 'mat'
tmp = load(filename);
if isfield(tmp, 'Vertices') && isfield(tmp, 'Atlas')
% this applies to BrainStorm *.mat files containing cortical meshes
atlas.pos = tmp.Vertices;
% copy some optional fields over with a new name
atlas = copyfields(tmp, atlas, {'Faces', 'Curvature', 'SulciMap'});
atlas = renamefields(atlas, {'Faces', 'Curvature', 'SulciMap'}, {'tri', 'curv', 'sulc'});
for i=1:numel(tmp.Atlas)
name = fixname(tmp.Atlas(i).Name);
nlabel = numel(tmp.Atlas(i).Scouts);
label = cell(1, nlabel);
index = zeros(size(atlas.pos,1), 1);
for j=1:nlabel
index(tmp.Atlas(i).Scouts(j).Vertices) = j;
label{j} = tmp.Atlas(i).Scouts(j).Label;
end
atlas.( name ) = index;
atlas.([name 'label']) = label;
end
elseif isfield(tmp, 'atlas')
% this applies to most FieldTrip *.mat files
atlas = tmp.atlas;
elseif numel(fieldnames(tmp))==1
% just take whatever variable is contained in the file
fn = fieldnames(tmp);
atlas = tmp.(fn{1});
if isstruct(atlas)
ft_warning('assuming that the variable "%s" in "%s" represents the atlas', fn{1}, filename);
else
ft_error('cannot read atlas structure from "%s"', filename);
end
else
ft_error('the mat-file %s does not contain a variable called ''atlas''',filename);
end
case 'yeo7'
% this uses Yeo2011_7Networks_MNI152_FreeSurferConformed1mm_LiberalMask_colin27.nii, which is
% the 7 network parcellation from https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
% aligned to the colin27 template (skull-stripped version of single_subj_T1_1mm.nii)
% using AFNI's 3dQwarp and 3dNwarpApply
atlas = ft_read_mri(filename, 'outputfield', 'tissue');
atlas.coordsys = 'mni';
atlas.tissuelabel = {
'7Networks_1'
'7Networks_2'
'7Networks_3'
'7Networks_4'
'7Networks_5'
'7Networks_6'
'7Networks_7'
};
colors = [
120 18 134;
70 130 180;
0 118 14;
196 58 250;
220 248 164;
230 148 34;
205 62 78
]; % not used
case 'yeo17'
% this uses Yeo2011_17Networks_MNI152_FreeSurferConformed1mm_LiberalMask_colin27.nii, which is
% the 17 network parcellation from https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
% aligned to the colin27 template (skull-stripped version of single_subj_T1_1mm.nii) using AFNI's 3dQwarp and 3dNwarpApply
atlas = ft_read_mri(filename, 'outputfield', 'tissue');
atlas.coordsys = 'mni';
atlas.tissuelabel = {
'17Networks_1'
'17Networks_2'
'17Networks_3'
'17Networks_4'
'17Networks_5'
'17Networks_6'
'17Networks_7'
'17Networks_8'
'17Networks_9'
'17Networks_10'
'17Networks_11'
'17Networks_12'
'17Networks_13'
'17Networks_14'
'17Networks_15'
'17Networks_16'
'17Networks_17'
};
colors = [
120 18 134;
255 0 0;
70 130 180;
42 204 164;
74 155 60;
0 118 14;
196 58 250;
255 152 213;
220 248 164;
122 135 50;
119 140 176;
230 148 34;
135 50 74;
12 48 255;
0 0 130;
255 255 0;
205 62 78
]; % not used
otherwise
ft_error('unsupported format "%s"', fileformat);
end % switch fileformat
if ~isempty(unit)
% ensure the atlas is in the desired units
atlas = ft_convert_units(atlas, unit);
else
% ensure the units of the atlas are specified
try
atlas = ft_determine_units(atlas);
catch
% ft_determine_units will fail for triangle-only gifties.
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% TTatlas labels moved to a subfunction for readability of the above code
function [labels, values] = TTatlas_labels
% the following information is from https://sscc.nimh.nih.gov/afni/doc/misc/afni_ttatlas/index_html
values = [
68
71
20
21
22
24
25
26
27
28
29
30
31
32
33
34
35
36
37
39
40
41
42
43
44
45
46
47
48
49
50
51
52
70
72
73
74
75
76
77
124
125
126
128
129
130
131
132
133
134
135
136
137
138
144
145
151
146
147
148
149
81
82
83
84
85
86
87
88
89
90
91
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
53
54
55
56
57
58
59
60
61
62
63
66
65
127
64
67
];
labels = {
'Hippocampus'
'Amygdala'
'Posterior Cingulate'
'Anterior Cingulate'
'Subcallosal Gyrus'
'Transverse Temporal Gyrus'
'Uncus'
'Rectal Gyrus'
'Fusiform Gyrus'
'Inferior Occipital Gyrus'
'Inferior Temporal Gyrus'
'Insula'
'Parahippocampal Gyrus'
'Lingual Gyrus'
'Middle Occipital Gyrus'
'Orbital Gyrus'
'Middle Temporal Gyrus'
'Superior Temporal Gyrus'
'Superior Occipital Gyrus'
'Inferior Frontal Gyrus'
'Cuneus'
'Angular Gyrus'
'Supramarginal Gyrus'
'Cingulate Gyrus'
'Inferior Parietal Lobule'
'Precuneus'
'Superior Parietal Lobule'
'Middle Frontal Gyrus'
'Paracentral Lobule'
'Postcentral Gyrus'
'Precentral Gyrus'
'Superior Frontal Gyrus'
'Medial Frontal Gyrus'
'Lentiform Nucleus'
'Hypothalamus'
'Red Nucleus'
'Substantia Nigra'
'Claustrum'
'Thalamus'
'Caudate'
'Caudate Tail'
'Caudate Body'
'Caudate Head'
'Ventral Anterior Nucleus'
'Ventral Posterior Medial Nucleus'
'Ventral Posterior Lateral Nucleus'
'Medial Dorsal Nucleus'
'Lateral Dorsal Nucleus'
'Pulvinar'
'Lateral Posterior Nucleus'
'Ventral Lateral Nucleus'
'Midline Nucleus'
'Anterior Nucleus'
'Mammillary Body'
'Medial Globus Pallidus'
'Lateral Globus Pallidus'
'Putamen'
'Nucleus Accumbens'
'Medial Geniculum Body'
'Lateral Geniculum Body'
'Subthalamic Nucleus'
'Brodmann area 1'
'Brodmann area 2'
'Brodmann area 3'
'Brodmann area 4'
'Brodmann area 5'
'Brodmann area 6'
'Brodmann area 7'
'Brodmann area 8'
'Brodmann area 9'
'Brodmann area 10'
'Brodmann area 11'
'Brodmann area 13'
'Brodmann area 17'
'Brodmann area 18'
'Brodmann area 19'
'Brodmann area 20'
'Brodmann area 21'
'Brodmann area 22'
'Brodmann area 23'
'Brodmann area 24'
'Brodmann area 25'
'Brodmann area 27'
'Brodmann area 28'
'Brodmann area 29'
'Brodmann area 30'
'Brodmann area 31'
'Brodmann area 32'
'Brodmann area 33'
'Brodmann area 34'
'Brodmann area 35'
'Brodmann area 36'
'Brodmann area 37'
'Brodmann area 38'
'Brodmann area 39'
'Brodmann area 40'
'Brodmann area 41'
'Brodmann area 42'
'Brodmann area 43'
'Brodmann area 44'
'Brodmann area 45'
'Brodmann area 46'