Skip to content

Latest commit

 

History

History
107 lines (90 loc) · 4.75 KB

README.md

File metadata and controls

107 lines (90 loc) · 4.75 KB

MOnte carlo code for QUIck proton dose calculation (moqui)

See associated publication in Phys Med Biol 67 174001

Installation

Requirements

  • GDCM > 2
    • Please refer to GDCM installation guide
    • You can also install GDCM v3 using package manager (libgdcm-dev in Ubuntu 22)
      • If you get spurious warnings in CMake, and they annoy you, consider installing (Ubuntu 22): libgdcm-tools libvtkgdcm-cil libvtkgdcm-dev libvtkgdcm-java python3-vtkgdcm
  • CUDA
  • The code has been tested with
    • GDCM v2 and CUDA v10.2 on Ubuntu 20.04
    • GDCM v3 and CUDA v11.8 on Ubuntu 22.04
    • GDCM v3 and CUDA v8.0 on Ubuntu 22.04
    • GDCM v3 and CUDA v12.6 on Alma Linux 9
  • ZLIB
  • Python3 (for phantom example)

Obtaining the code

$ git clone https://github.com/ferdymercury/moquimc.git

Compile the phantom case

$ cd moquimc
$ mkdir build
$ cd build
$ cmake ..
$ make
  • You can specify a custom CUDA path in the cmake command, for example: -DCUDAToolkit_ROOT=/opt/cuda-8.0 -DCMAKE_CUDA_COMPILER=/opt/cuda-8.0/bin/nvcc. The default is the nvcc found within thhe PATH environment variable.
  • You can specify a custom CUDA compute capability via -DCMAKE_CUDA_ARCHITECTURES=20. The default is to use CUDA compute capability 7.5

Running the phantom example

$ python3 ../tests/mc/phantom/create_phantom.py # create water phantom in /tmp/, you need to install numpy
$ ./tests/mc/phantom/phantom_env --lxyz 100 100 350 --pxyz 0.0 0.0 -175 --nxyz 200 200 350 --spot_energy 200.0 0.0 --spot_position 0 0 0.5 --spot_size 30.0 30.0 --histories 100000 --phantom_path /tmp/water_phantom.raw --output_prefix ./ --gpu_id 0 > ./log.out

Or simply:

$ ctest -V -R phantom_env

Update Dec/26/2023

  • There have been large updates in moqui and we added new features
    • Statistical uncertainty based stopping criteria (Please refer to the example input parameter Statistical stopping criteria)
    • Robust options (setup errors and density scaling, Please refer to the example input parameter Robust options)
    • Aperture handling
    • Support multiple calibration curves (You can override machine selection and define multiple calibration curves for a machine)
    • Unit weights per spot for Dij calculation (This only works for Dij scorer. The UnitWeight will be the absolute number of particles simulated)

Getting calibration curves

  • moqui uses fitted functions for calibration curves
  • You need to obtain stopping power ratio to water and radiation length per density and define compute_rsp_ and compute_rl_ functions in patient_material_t
  • To obtain the curves:
    1. Obtain material information using TOPAS
    2. Calculate correction factors for desired SPR curve
    3. Calculate fitting curves and implement them in moqui
    4. You can refer to the fit_rsp.py for the curve fitting
  • You can find the TOPAS extensions and example parameter file under treatment_machines/TOPAS
  • These are updated version of the HU extension in TOPAS (https://github.com/topasmc/extensions/tree/master/HU)

Authors

Hoyeon Lee ([email protected]) Jungwook Shin Joost M. Verburg Mislav Bobić Brian Winey Jan Schuemann Harald Paganetti

Notes

You might need for old Tesla C2070 commands such as:

CompileFlags:
Add:
  [
    '--cuda-path="/opt/cuda-8.0/"',
    --cuda-gpu-arch=sm_20,
    '-L"/opt/cuda-8.0/lib64/"',
    -lcudart,
  ]

For an Ampere GPU NVIDIA A40:

  • cmake ../ -DCUDAToolkit_ROOT=/usr/local/cuda-12.6 -DCMAKE_CUDA_ARCHITECTURES=86 -DCMAKE_CUDA_COMPILER=/usr/local/cuda-12.6/bin/nvcc

Acknowledgements

This work is supported by NIH/NCI R01 234210 "Fast Individualized Delivery Adaptation in Proton Therapy"