Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

_scaled_dot_product_efficient_attention a bug for lse #122

Open
neonhuang opened this issue Feb 8, 2025 · 2 comments
Open

_scaled_dot_product_efficient_attention a bug for lse #122

neonhuang opened this issue Feb 8, 2025 · 2 comments

Comments

@neonhuang
Copy link

neonhuang commented Feb 8, 2025

https://github.com/feifeibear/long-context-attention/blob/0.6.0/yunchang/kernels/attention.py#L47
torch版本时torch 2.3
您好,我实验发现对于 下面的case
batch_size = 1
num_heads = 2
head_dim = 128
seq_len = 16

torch.ops.aten._scaled_dot_product_efficient_attention 的lse返回值有bug
这里建议使用 _scaled_dot_product_flash_attention这个函数,返回lse

import torch
batch_size = 1
num_heads = 2
head_dim = 128
seq_len = 16

dtype = torch.float16
device = 'cuda'

torch.manual_seed(42)
query = torch.rand(batch_size, num_heads, seq_len, head_dim, dtype=dtype, device=device)
key = torch.rand(batch_size, num_heads, seq_len, head_dim, dtype=dtype, device=device)
value = torch.rand(batch_size, num_heads, seq_len, head_dim, dtype=dtype, device=device)

out1 = torch.nn.functional.scaled_dot_product_attention(query,key,value)

out2, lse2 = torch.ops.aten._scaled_dot_product_flash_attention(query, key, value)[:2]
print(f'lse2: {lse2}')

out3, lse3 = torch.ops.aten._scaled_dot_product_efficient_attention(query, key,value,
attn_bias=None, compute_log_sumexp=True)[:2]
print(f'lse3: {lse3}')

print(f'Result: {torch.allclose(out1, out2, rtol=1e-3, atol=1e-3)}')
print(f'Result: {torch.allclose(out1, out3, rtol=1e-3, atol=1e-3)}')
print(f'Result: {torch.allclose(lse2, lse3, rtol=1e-3, atol=1e-3)}')

结果:
lse2: tensor([[[5.4660, 5.7685, 5.4396, 5.6371, 5.3691, 5.4923, 5.4666, 5.4459,
5.5439, 5.7281, 5.8045, 5.6622, 5.7923, 5.6987, 5.5620, 5.5473],
[5.4989, 5.8029, 5.5886, 5.5052, 5.6427, 5.5984, 5.7117, 5.4015,
5.6134, 5.5992, 5.4512, 5.8386, 5.8852, 5.3351, 5.6285, 5.6732]]],
device='cuda:0')

lse3: tensor([[[5.4660, 5.7685, 5.4396, 5.6371, 5.3691, 5.4923, 5.4666, 5.4459,
5.5439, 5.7281, 5.8045, 5.6622, 5.7923, 5.6987, 5.5620, 5.5473,
inf, inf, inf, inf, inf, inf, inf, inf,
inf, inf, inf, inf, inf, inf, inf, inf],
[5.4989, 5.8029, 5.5886, 5.5052, 5.6427, 5.5984, 5.7117, 5.4015,
5.6134, 5.5992, 5.4512, 5.8386, 5.8852, 5.3351, 5.6285, 5.6732,
inf, inf, inf, inf, inf, inf, inf, inf,
inf, inf, inf, inf, inf, inf, inf, inf]]],
device='cuda:0')

Result: True
Result: True

@neonhuang
Copy link
Author

https://github.com/feifeibear/long-context-attention/blob/0.6.0/yunchang/kernels/attention.py#L47,这一行可以改为如下:
out, lse = torch.ops.aten._scaled_dot_product_flash_attention(q.permute(0, 2, 1, 3), key.permute(0, 2, 1, 3), value.permute(0, 2, 1, 3),
dropout_p=dropout_p,
is_causal=causal,
scale=softmax_scale,
)[:2]

@feifeibear
Copy link
Owner

感谢 @neonhuang !您能交一个 MR 么?如果 torch 版本<2.3 执行你粘贴的代码?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants