-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpsd_meg_sensor_fit.m
137 lines (112 loc) · 5.16 KB
/
psd_meg_sensor_fit.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
function psd_meg_sensor_fit(a,dt_save,MD,expK,C)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Function to explore a range of parameters in the Whole-Brain Hopf Model
% and compare with MEG Empirical data
%
% Francesca Castaldo ([email protected]) 2022
%
% Input:
%
% a: bifurcation parameter
% tmax: time of the simulations
% dt_save: simulation resolution
% MD: range of mean delays in ms
% expK: range of Coupling
% C: structural connectivity
%
% Try this Example: psd_meg_sensor_fit(-5,2e-3,0:1:20,-1:0.1:1.7,'AAL90n32s')
%
% 1) Define parameters
% 2) Loads MEG Empirical (Sensor space)
% 3) Calculates and saves all simulated PSD
% 4) Measures the model performance (Squared Euclidean Distance and Correlation)
%
% To download/access existing simulations please access this link:
% https://liveuclac-my.sharepoint.com/:f:/g/personal/skgtfca_ucl_ac_uk/EjKFAcFpXC1FtJoCKVZoI1YBCB1gMZfZgl2SP83Tb9y9OA?e=E4Ueup
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DEFINE your current folder to A) load your simulations and B) save the
% output in the same folder
% if a==-5
% if C==AAL90n32s
% cd('C:\Users\fcast\OneDrive - University College London\CLUSTER\PROJECT[AAL]\New_Simu\32AAL\a_neg5')
% disp(['Running for' num2str(a) '90AAL32'])
% elseif C==AAL90n985s
% cd('C:\Users\fcast\OneDrive - University College London\CLUSTER\PROJECT[AAL]\New_Simu\985AAL\a_neg5')
% disp(['Running for' num2str(a) '90AAL985'])
% elseif C==SHEAF200n32s
% cd('C:\Users\fcast\OneDrive - University College London\CLUSTER\PROJECT[SHEAFER]\Simulations')
% disp(['Running for' num2str(a) '200SHEAF32'])
% end
%
% elseif a==-0.2
% if C==AAL90n32s
% cd('C:\Users\fcast\OneDrive - University College London\CLUSTER\PROJECT[AAL]\New_Simu\32AAL\a_neg02')
% disp(['Running for' num2str(a) '90AAL32'])
% end
%
% elseif a==-0.05
% if C==AAL90n32s
% cd('C:\Users\fcast\OneDrive - University College London\CLUSTER\PROJECT[AAL]\New_Simu\32AAL\a_neg005\Simulations')
% disp(['Running for' num2str(a) '90AAL32'])
% end
% end
% 1) Define simulation Parameters
K=10.^(expK);
MD=MD.*1e-3; % Mean Delay in seconds
fbins=1000;
freqZ = (0:fbins-1)/(dt_save*fbins);
% ind5Hz=find(freqZ>=5,1);
% ind25Hz=find(freqZ>=25);
% ind_Low_F=find(freqZ==3); %in case we want to investigate only frequency above this value
ind150Hz=find(freqZ==150); %range of interest
PSD_Simu_Global = zeros(length(K),length(MD),ind150Hz); %whole signal
% PSD_SimuSensor = zeros(length(K),length(MD),41); %5-25Hz signal
Error_MEG_PSD = zeros(length(K),length(MD));
Fit_MEG_PSD = zeros(length(K),length(MD));
Pdist_Error_MEG_PSD = zeros(length(K),length(MD));
Error_MEG_PSD_Sub = zeros(length(K),length(MD), 89);
Corr_Fit_MEG_PSD = zeros(length(K),length(MD));
% fit_MEG_envFC = zeros(length(K),length(MD));
% corrSC = zeros(length(K),length(MD));
% 2) Load Empirical Data
% Load Mean Across Channels for each subject (MEG_MeanPSD_Planar_89) and
% mean over subjects (Mean_PSD_Planar_89). Data can be found at the HCP
% website.
%Define your path
load('MEG_MeanPSD_Planar_89.mat')
load('Mean_PSD_Planar_89.mat')
% 3) Calculate and save the model PSD in a file called MEG_PSD_Fitting (see
% below)
for g=1:length(K)
for d=1:length(MD)
k=K(g);
md=MD(d);
disp(['Now K=' num2str(k) ', mean Delay = ' num2str(md*1e3) 'ms'])
K_label=num2str(log10(k));
ind_p=find(K_label=='.');
if numel(ind_p)
K_label(ind_p)='p';
end
load(['a_Remote_K1E' K_label '_MD_' num2str(md*1e3) 'a' num2str(a)],'Zsave') %for cluster new simulations
Fourier_Simu_Global= fft(mean(Zsave),fbins); %% Fourier of Z (complex)
Simu_PSD_MEAN=abs(Fourier_Simu_Global(:,1:ind150Hz)).^2;
Simu_PSD_MEAN=Simu_PSD_MEAN/sum(Simu_PSD_MEAN);
% Simu_PSD_MEAN=squeeze(PSD_Simu_Global(g,d,:))'; Uncomment this
% line and comment the lines up if you have PSD_Simu_Global
% already saved
Error_MEG_PSD(g,d)=pdist([cumsum(Mean_PSD_Planar_89); cumsum(Simu_PSD_MEAN)],'squaredeuclidean');
Fit_MEG_PSD(g,d)= corr2(cumsum(Mean_PSD_Planar_89), cumsum(Simu_PSD_MEAN));
Pdist_Error_MEG_PSD(g,d)=pdist([Mean_PSD_Planar_89;Simu_PSD_MEAN],'squaredeuclidean');
Corr_Fit_MEG_PSD(g,d)= corr2(Mean_PSD_Planar_89,Simu_PSD_MEAN);
for s=1:89
Subj_PSD_Planar=MEG_MeanPSD_Planar_89(s,:)/sum(MEG_MeanPSD_Planar_89(s,:));
Error_MEG_PSD_Sub(g,d,s) = pdist([cumsum(Subj_PSD_Planar); cumsum(Simu_PSD_MEAN)]);%,'squaredeuclidean');
Error_MEG_PSD_Sub_squared(g,d,s) = pdist([cumsum(Subj_PSD_Planar); cumsum(Simu_PSD_MEAN)],'squaredeuclidean');
Corr_MEG_PSD_Sub(g,d,s)=corr2(cumsum(Subj_PSD_Planar), cumsum(Simu_PSD_MEAN));
end
PSD_Simu_Global(g,d,:) = Simu_PSD_MEAN;
end
end
save('MEG_sensor_PSD_Fitting','MD','expK','Error_MEG_PSD','PSD_Simu_Global','Error_MEG_PSD_Sub','Corr_Fit_MEG_PSD','Fit_MEG_PSD','Pdist_Error_MEG_PSD','Corr_MEG_PSD_Sub','Error_MEG_PSD_Sub_squared')