-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMOM_analysis.m
579 lines (493 loc) · 19.3 KB
/
MOM_analysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
function MOM_analysis
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Script to detect MOMs in different frequency bands for a selected point
% in the parameter space
%
% 1. Load DEMO simulations (the one used to generate plots in the paper)
% and Define threshold power from a baseline scenario.
% Resonance is detected when power increases 5 STD above baseline
% 2. For a selected working point (SIMU), define the time points when the power
% is above threshold in bands Delta, Theta, Alpha and Beta
% 3. Measure MOMs size, Duration and Occupancy. Plot.
% 4. Figure signals overtime (for each parcellated area)
% 5. Video MOMs over time
% 6. Figure with sequence of relevant MOMs over top view from Top
% Needs: bandpasshopf.m, conver_back_to_time.m, subplot_tight.m
%
% July 2021
% Joana Cabral and Francesca Castaldo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
simu=1; %select your simulation of interest
simulation_names={'NoDelays','WeakK','IntermediateK','StrongK','LongDelays'};
% for live script
% cd('C:\Users\fcast\OneDrive - University College London\Cabral_Castaldo\Simulations\AAL_32subj')
% Frequency bands to analyze (in Hz)
delta = [0.5 4];
theta = [4 8];
alpha = [8 13];
beta = [13 30];
low_pass=30;
% 1- SIMULATION FILE TO READ and DEFINE BASELINE
%addpath(genpath('C:\Users\fcast\OneDrive - University College London\Cabral_Castaldo\Code\Hopf_Delay_Toolbox\Data\Simulations'))
% addpath(genpath('C:\Users\fcast\OneDrive - University College London\CLUSTER\PROJECT[AAL]\New_Simu'));
%folder='/Users/joana/Documents/Work/Connectome Frequencies/CabralCastaldo/Shaeffer50s/';
folder='/Users/joana/Documents/Work/Connectome Frequencies/CabralCastaldo/';
% Good one with AAL32
% 300 seconds
simulation_file={'a_Remote_K1E1_MD_0a-5','300sec_a_Remote_K1E-1_MD_3a-5','300sec_a_Remote_K1E1_MD_3a-5','300sec_a_Remote_K1E1p7_MD_3a-5','a_Remote_K1E1_MD_20a-5'};
% 50 seconds
%simulation_file={'a_Remote_K1E1_MD_0a-5','a_Remote_K1E-1_MD_3a-5','a_Remote_K1E1_MD_3a-5','a_Remote_K1E1p7_MD_3a-5','a_Remote_K1E1_MD_20a-5'};
% Compare with dt 1e-6 in optimal intermediate
%simulation_file={'a_Remote_K1E1_MD_0a-5','300sec_a_Remote_K1E-1_MD_3a-5','a_Remote_K1E1_MD_3a-5dt1e-06','300sec_a_Remote_K1E1p7_MD_3a-5','300sec_a_Remote_K1E1_MD_20a-5'};
% Compare with AAL985
%simulation_file={'300sec_a_Remote_K1E1_MD_0a-5','300sec_a_Remote_K1E-1_MD_3a-5','AAL985_300sec_a_Remote_K1E1_MD_3a-5','300sec_a_Remote_K1E1p7_MD_3a-5','300sec_a_Remote_K1E1_MD_20a-5'};
% Compare with Shaeffer
%simulation_file={'a_Remote_K1E1_MD_0a-5','a_Remote_K1E-1_MD_3a-5','300s_a_Remote_K1E1_MD_3a-5','a_Remote_K1E1p7_MD_3a-5','a_Remote_K1E1_MD_20a-5'};
% BASELINE: Load data in 0 delay case, intermediate coupling to define the baseline
% load('d4_HCP_Sim_Cluster_K1E1_MD0.mat'); %a=-5;
load([folder simulation_file{1}])
N = size(Zsave,1);
Order=[1:2:N N:-2:2];
Zsave = Zsave./(5*std(Zsave(:)));
Zsave=Zsave(Order,:);
Zdelta = zeros(size(Zsave));
Ztheta = zeros(size(Zsave));
Zalpha = zeros(size(Zsave));
Zbeta = zeros(size(Zsave));
Zfilt = zeros(size(Zsave));
for n=1:N
Zdelta(n,:) = bandpasshopf(Zsave(n,:), delta , 1/dt_save);
Ztheta(n,:) = bandpasshopf(Zsave(n,:), theta , 1/dt_save);
Zalpha(n,:) = bandpasshopf(Zsave(n,:), alpha , 1/dt_save);
Zbeta(n,:) = bandpasshopf(Zsave(n,:), beta , 1/dt_save);
Zfilt(n,:)= bandpasshopf(Zsave(n,:),[0.01 low_pass],1/dt_save);
end
clear Zsave
% Remove the first and last seconds after band pass filtering
Zdelta(:,[1:1/dt_save end-1/dt_save:end])=[];
Ztheta(:,[1:1/dt_save end-1/dt_save:end])=[];
Zalpha(:,[1:1/dt_save end-1/dt_save:end])=[];
Zbeta(:,[1:1/dt_save end-1/dt_save:end])=[];
Zfilt(:,[1:1/dt_save end-1/dt_save:end])=[];
% Define thresholds as 5*STD of the power in each band in each area
sigma_std=5;
deltathr=sigma_std*std(Zdelta,[],2);
thetathr=sigma_std*std(Ztheta,[],2);
alphathr=sigma_std*std(Zalpha,[],2);
betathr=sigma_std*std(Zbeta,[],2);
filtthr=sigma_std*std(Zfilt,[],2);
clear Zalpha Zbeta Ztheta Zfilt
%% 2 - Load data in the working point and filter into bands
% Change the "simu" to look at other scenario outside the optimal working
% point
load([folder simulation_file{simu}])
N = size(Zsave,1);
% Order=[1:2:N N:-2:2];
Zsave=Zsave./(5*std(Zsave(:)));
Zsave=Zsave(Order,:);
Zdelta=zeros(size(Zsave));
Ztheta=zeros(size(Zsave));
Zalpha=zeros(size(Zsave));
Zbeta=zeros(size(Zsave));
Zfilt = zeros(size(Zsave));
for n=1:N
Zdelta(n,:) = bandpasshopf(Zsave(n,:),delta,1/dt_save);
Ztheta(n,:) = bandpasshopf(Zsave(n,:),theta,1/dt_save);
Zalpha(n,:) = bandpasshopf(Zsave(n,:),alpha,1/dt_save);
Zbeta(n,:) = bandpasshopf(Zsave(n,:),beta,1/dt_save);
Zfilt(n,:) = bandpasshopf(Zsave(n,:),[0.01 low_pass],1/dt_save);
end
clear Zsave
% Remove the first and last seconds after band passing
Zdelta(:,[1:1/dt_save end-1/dt_save:end])=[];
Ztheta(:,[1:1/dt_save end-1/dt_save:end])=[];
Zalpha(:,[1:1/dt_save end-1/dt_save:end])=[];
Zbeta(:,[1:1/dt_save end-1/dt_save:end])=[];
Zfilt(:,[1:1/dt_save end-1/dt_save:end])=[];
% Calculate amplitude envelope
Env_Delta =abs(hilbert(Zdelta'))';
Env_Theta =abs(hilbert(Ztheta'))';
Env_Alpha =abs(hilbert(Zalpha'))';
Env_Beta =abs(hilbert(Zbeta'))';
Env_Zfilt =abs(hilbert(Zfilt'))';
clear Zdelta Zalpha Zbeta Ztheta
% Detect formation of a MOMs in each band
T_Delta =zeros(size(Env_Delta));
T_Theta =zeros(size(Env_Theta));
T_Alpha =zeros(size(Env_Alpha));
T_Beta =zeros(size(Env_Beta));
for n=1:N
T_Delta(n,:) =Env_Delta(n,:) >deltathr(n);
T_Theta(n,:) =Env_Theta(n,:) >thetathr(n);
T_Alpha(n,:) =Env_Alpha(n,:) >alphathr(n);
T_Beta(n,:) =Env_Beta(n,:) >betathr(n);
end
clear Env_Delta Env_Theta Env_Alpha Env_Beta
%% 3 - Calculate MOM durations and size, Coalition size and Occupancy
% Delta MOM Durations
MOM_Durations=[];
for n=1:N
% Detect switches in and out of this state
a=find(diff(T_Delta(n,:))==1); %on
b=find(diff(T_Delta(n,:))==-1); %off
% We discard the cases where state sarts or ends ON
if length(b)>length(a)
b(1)=[];
elseif length(a)>length(b)
a(end)=[];
elseif ~isempty(a) && ~isempty(b) && a(1)>b(1)
b(1)=[];
a(end)=[];
end
if ~isempty(a) && ~isempty(b)
MOM_Durations=[MOM_Durations b-a];
end
end
Delta_Mean_Duration= mean(MOM_Durations)*dt_save;
Delta_std_Duration= std(MOM_Durations)*dt_save;
% Theta MOM Durations
MOM_Durations=[];
for n=1:N
% Detect switches in and out of this state
a=find(diff(T_Theta(n,:))==1); %on
b=find(diff(T_Theta(n,:))==-1); %off
% We discard the cases where state sarts or ends ON
if length(b)>length(a)
b(1)=[];
elseif length(a)>length(b)
a(end)=[];
elseif ~isempty(a) && ~isempty(b) && a(1)>b(1)
b(1)=[];
a(end)=[];
end
if ~isempty(a) && ~isempty(b)
MOM_Durations=[MOM_Durations b-a];
end
end
Theta_Mean_Duration= mean(MOM_Durations)*dt_save;
Theta_std_Duration= std(MOM_Durations)*dt_save;
% Alpha MOM Durations
MOM_Durations=[];
for n=1:N
a=find(diff(T_Alpha(n,:))==1); %on
b=find(diff(T_Alpha(n,:))==-1); %off
if length(b)>length(a)
b(1)=[];
elseif length(a)>length(b)
a(end)=[];
elseif ~isempty(a) && ~isempty(b) && a(1)>b(1)
b(1)=[];
a(end)=[];
end
if ~isempty(a) && ~isempty(b)
MOM_Durations=[MOM_Durations b-a];
end
end
Alpha_Mean_Duration= mean(MOM_Durations)*dt_save;
Alpha_std_Duration= std(MOM_Durations)*dt_save;
% Beta MOMs
MOM_Durations=[];
for n=1:N
a=find(diff(T_Beta(n,:))==1); %on
b=find(diff(T_Beta(n,:))==-1); %off
if length(b)>length(a)
b(1)=[];
elseif length(a)>length(b)
a(end)=[];
elseif ~isempty(a) && ~isempty(b) && a(1)>b(1)
b(1)=[];
a(end)=[];
end
if ~isempty(a) && ~isempty(b)
MOM_Durations=[MOM_Durations b-a];
end
end
Beta_Mean_Duration= mean(MOM_Durations)*dt_save;
Beta_std_Duration= std(MOM_Durations)*dt_save;
% 4 - Coalition size (N of elements contributing to the emergence of MOMs)
Delta_coalition_members=sum(T_Delta(:,2:end-2));
Delta_coalition_members=Delta_coalition_members(Delta_coalition_members>0);
Delta_coalition_members_mean=mean(Delta_coalition_members);
Delta_coalition_members_std=std(Delta_coalition_members);
clear Delta_coalition_members
Theta_coalition_members=sum(T_Theta(:,2:end-2));
Theta_coalition_members=Theta_coalition_members(Theta_coalition_members>0);
Theta_coalition_members_mean=mean(Theta_coalition_members);
Theta_coalition_members_std=std(Theta_coalition_members);
clear Theta_coalition_members
Alpha_coalition_members=sum(T_Alpha(:,2:end-2));
Alpha_coalition_members=Alpha_coalition_members(Alpha_coalition_members>0);
Alpha_coalition_members_mean=mean(Alpha_coalition_members);
Alpha_coalition_members_std=std(Alpha_coalition_members);
Beta_coalition_members=sum(T_Beta(:,2:end-2));
Beta_coalition_members=Beta_coalition_members(Beta_coalition_members>0);
Beta_coalition_members_mean=mean(Beta_coalition_members);
Beta_coalition_members_std=std(Beta_coalition_members);
clear Alpha_coalition_members Beta_coalition_members
% MOM Occupancy
Delta_Occ=sum(sum(T_Delta(:,2:end-2)))/numel(T_Delta);
Theta_Occ=sum(sum(T_Theta(:,2:end-2)))/numel(T_Theta);
Alpha_Occ=sum(sum(T_Alpha(:,2:end-2)))/numel(T_Alpha);
Beta_Occ =sum(sum(T_Beta (:,2:end-2)))/numel(T_Beta);
% Plot: FIGURE MEAN DURATION, SIZE, OCCUPANCY
% barplot
figure('Position',[31 334 449 218],'Name',simulation_names{simu})
subplot(1,3,1,'Linewidth',1,'Fontsize',14)
hold on
bar(1,Delta_Mean_Duration, 'Facecolor', [1 .8 .5],'Linewidth',1)
bar(2,Theta_Mean_Duration, 'Facecolor', [1 .7 .7],'Linewidth',1)
bar(3,Alpha_Mean_Duration, 'Facecolor', [.7 .7 1],'Linewidth',1)
bar(4,Beta_Mean_Duration, 'Facecolor', [.7 1 .7],'Linewidth',1)
ylim([0 1.05])
hold on
errorbar([Delta_Mean_Duration Theta_Mean_Duration Alpha_Mean_Duration Beta_Mean_Duration],[Delta_std_Duration Theta_std_Duration Alpha_std_Duration Beta_std_Duration], 'LineStyle', 'none')
xticks([1 2 3 4])
xticklabels({'\delta','\theta', '\alpha', '\beta'})
%xlabel('Frequency Bands','FontSize',14,'FontName','Helvetica')
ylabel('MOM Duration (sec)','FontSize',14,'FontName','Helvetica')
subplot(1,3,2,'Linewidth',1,'Fontsize',14)
hold on
bar(1,Delta_coalition_members_mean, 'Facecolor', [1 .8 .5],'Linewidth',1)
bar(2,Theta_coalition_members_mean, 'Facecolor', [1 .7 .7],'Linewidth',1)
bar(3,Alpha_coalition_members_mean, 'Facecolor', [.7 .7 1],'Linewidth',1)
bar(4,Beta_coalition_members_mean, 'Facecolor', [.7 1 .7],'Linewidth',1)
hold on
errorbar([Delta_coalition_members_mean Theta_coalition_members_mean Alpha_coalition_members_mean Beta_coalition_members_mean],[Delta_coalition_members_std Theta_coalition_members_std Alpha_coalition_members_std Beta_coalition_members_std], 'LineStyle', 'none')
xticks([1 2 3 4])
xticklabels({'\delta','\theta', '\alpha', '\beta'})
%xlabel('Frequency Bands','FontSize',14,'FontName','Helvetica')
ylabel('MOM Size','FontSize',14,'FontName','Helvetica')
%title('Working point Delay=3ms, K=10','FontSize',18,'FontName','Helvetica')
ylim([0 72])
subplot(1,3,3,'Linewidth',1,'Fontsize',14)
hold on
bar(1,Delta_Occ, 'Facecolor', [1 .8 .5],'Linewidth',1)
bar(2,Theta_Occ, 'Facecolor', [1 .7 .7],'Linewidth',1)
bar(3,Alpha_Occ, 'Facecolor', [.7 .7 1],'Linewidth',1)
bar(4,Beta_Occ, 'Facecolor', [.7 1 .7],'Linewidth',1)
hold on
xticks([1 2 3 4])
xticklabels({'\delta','\theta', '\alpha', '\beta'})
%xlabel('Frequency Bands','FontSize',14,'FontName','Helvetica')
ylabel('MOM Occupancy','FontSize',14,'FontName','Helvetica')
%title('Working point Delay=3ms, K=10','FontSize',18,'FontName','Helvetica')
ylim([0 0.55])
%% 4- Figure Signals over time
Time_to_plot=25;
%Zfilt=Zfilt(:,1:Time_to_plot/dt_save);
Phase_filt=angle(hilbert(Zfilt'))';
OP=abs(mean(exp(1i*Phase_filt)));
load AAL_labels.mat label90
figure('Color','white')
hold on
% Delta patches
for n=1:N
u=0;
y=[]; x=[];
for tx=find(T_Delta(n,1:Time_to_plot/dt_save))
u=u+1;
y(:,u)= [n-0.5 n-0.5 n+.5 n+.5];
x(:,u) = [tx-1 tx tx tx-1];
end
p=patch(x.*dt_save,y,'y');
set(p,'LineStyle','none','FaceColor','y','FaceAlpha',0.3);
end
ylim([0 N+1])
% Theta patches
for n=1:N
u=0;
y=[]; x=[];
for tx=find(T_Theta(n,1:Time_to_plot/dt_save))
u=u+1;
y(:,u)= [n-0.5 n-0.5 n+.5 n+.5];
x(:,u) = [tx-1 tx tx tx-1];
end
p=patch(x.*dt_save,y,'r');
set(p,'LineStyle','none','FaceColor','r','FaceAlpha',0.3);
end
ylim([0 N+1])
% Alpha patches
for n=1:N
u=0;
y=[]; x=[];
for tx=find(T_Alpha(n,1:Time_to_plot/dt_save))
u=u+1;
y(:,u)= [n-0.5 n-0.5 n+.5 n+.5];
x(:,u) = [tx-1 tx tx tx-1];
end
p=patch(x.*dt_save,y,'b');
set(p,'LineStyle','none','FaceColor','b','FaceAlpha',0.3);
end
for n=1:N
u=0;
y=[];
x=[];
for tx=find(T_Beta(n,1:Time_to_plot/dt_save))
u=u+1;
y(:,u)= [n-0.5 n-0.5 n+.5 n+.5];
x(:,u) = [tx-1 tx tx tx-1];
end
p=patch(x.*dt_save,y,'g');
set(p,'LineStyle','none','FaceColor','g','FaceAlpha',0.3);
end
plot(0:dt_save:(length(Zfilt)-1)*dt_save,(1:N)'.*ones(size(Zfilt))+(Zfilt./(2*filtthr)),'k')
%title(['Simulated signal in the ' num2str(N) ' units coupled with K=' num2str(K) ' and MD= ' num2str(MD*1000) ' ms, filtered below ' num2str(low_pass) 'Hz'],'FontSize',14,'FontName','Helvetica')
xlabel('Time (seconds)','FontSize',18,'FontName','Helvetica')
%ylabel('Units representing anatomically-defined cortical and subcortical brain areas','FontSize',18,'FontName','Helvetica')
% xlim([0 Interval])
box off
set(gca,'YTick',1:N,'Fontsize',16)
set(gca,'YTickLabel',[])
%set(gca,'YTickLabel',label90(Order,:))
ylim([0 N+1])
xlim([0 Time_to_plot])
[cc p]=corrcoef(sum(Env_Zfilt),OP)
OP=OP(1:Time_to_plot/dt_save);
Env_Zfilt=Env_Zfilt(:,1:Time_to_plot/dt_save);
figure
[AX,H1,H2]=plotyy(0:dt_save:(length(OP)-1)*dt_save,mean(Env_Zfilt),0:dt_save:(length(OP)-1)*dt_save,OP);
set(AX(2),'ytick',0:0.5:1,'ylim',[0 1],'xlim',[0 Time_to_plot],'Fontsize',16)
set(AX(1),'ytick',[0.1 0.2],'ylim',[0.05 0.25],'xlim',[0 Time_to_plot],'Fontsize',16)
xlabel('Time (seconds)','Fontsize',16)
legend({'Mean Amplitude Envelope','Kuramoto Order Parameter'},'Orientation','horizontal','Fontsize',16)
box off
%% 5- Video MOMs over time
T_timepoints=6:10:5006;
Brain_Mask=niftiread('MNI152_T1_2mm_brain_mask.nii');
scortex=smooth3(Brain_Mask);
clear Brain_Mask
% Normalize Zfilt between 0 and 1 for the renderings
Zfilt=Zfilt/(2*std(Zfilt(:)));
Zfilt(Zfilt>1)=1;
Zfilt(Zfilt<-1)=-1;
Zfilt=(Zfilt+1)/2;
load AAL_cog_MNI2mm Parcels_cog
MNI_coord=Parcels_cog;
clear aal_cog
% PLOT SPHERES IN THE LOCATION OF EACH AREA
a=3;
[x,y,z] = sphere;
x=a*x;
y=a*y;
z=a*z;
figure('color','w','Position',[388 281 579 366])
videoMOMs = VideoWriter(['MOMs_' simulation_names{simu} '.mp4'],'MPEG-4'); %create the video object
videoMOMs.FrameRate = round(1/(dt_save*10));
videoMOMs.Quality = 25;
open(videoMOMs); %open the file for writing
hold on
% First plot a transparent cortex
cortexpatch=patch(isosurface(scortex,0.1), 'FaceColor', [0.9 0.9 0.9], 'EdgeColor', 'none','FaceAlpha', 0.1);
reducepatch(cortexpatch,0.1);
isonormals(scortex,cortexpatch);
% Then plot one sphere in each area
for n=1:N
s(n)=surf(x+MNI_coord(n,2), y+MNI_coord(n,1),z+MNI_coord(n,3),'FaceColor',[0.9 .9 .9],'EdgeColor','none','FaceAlpha',0.2);
end
axis equal
material dull
lighting gouraud
daspect([1 1 1])
h = camlight('headlight');
xlim([5 105])
ylim([5 85])
zlim([0 80])
axis off
view(0,20)
%view(-90,90) % Top view
for t=1:length(T_timepoints)
Delta_color=T_Delta(:,T_timepoints(t));
Alpha_color=T_Alpha(:,T_timepoints(t));
Beta_color=T_Beta(:,T_timepoints(t));
Theta_color=T_Theta(:,T_timepoints(t));
Brightness=Zfilt(:,T_timepoints(t));
for n=1:N
if Beta_color(n)
s(n).FaceColor=[(Brightness(n)+1)*0.35 0.5*(Brightness(n)+1) (Brightness(n)+1)*0.35];
s(n).FaceAlpha=0.7;
elseif Theta_color(n)
s(n).FaceColor=[0.5*(Brightness(n)+1) (Brightness(n)+1)*0.35 (Brightness(n)+1)*0.35];
s(n).FaceAlpha=0.7;
elseif Alpha_color(n)
s(n).FaceColor=[(Brightness(n)+1)*0.35 (Brightness(n)+1)*0.35 0.5*(Brightness(n)+1)];
s(n).FaceAlpha=0.7;
elseif Delta_color(n)
s(n).FaceColor=[0.5*(Brightness(n)+1) 0.4*(Brightness(n)+1) 0.25*(Brightness(n)+1)];
s(n).FaceAlpha=0.7;
else
s(n).FaceColor=[0.5+Brightness(n)*.2 0.5+Brightness(n)*.2 0.5+Brightness(n)*.2];
s(n).FaceAlpha=0.1;
end
end
title(['T = ' num2str((T_timepoints(t)-5)*dt_save,'%3.2f') 's'])
view(t*.5,20)
%pause(0.05)
camlight(h,'headlight')
frame = getframe(gcf);
writeVideo(videoMOMs,frame); %write the image to file
end
close(videoMOMs); %close the file
%SAVE VIDEO
% % 6- FIGURE with sequence of MOMs over time view from Top
%
% T_timepoints=3500:50:6000; %select the time points more relevant for the explored frequency band
%
% figure('color','w')
%
% for t=1:length(T_timepoints)
%
% subplot_tight(5,ceil(numel(T_timepoints)/5),t,0.001)
%
% hold on
% % First plot a transparent cortex
% cortexpatch=patch(isosurface(scortex,0.1), 'FaceColor', [0.9 0.9 0.9], 'EdgeColor', 'none','FaceAlpha', 0.1);
% reducepatch(cortexpatch,0.1);
% isonormals(scortex,cortexpatch);
%
% % Then plot one sphere in each area
% for n=1:N
% s(n)=surf(x+MNI_coord(n,2), y+MNI_coord(n,1),z+MNI_coord(n,3),'FaceColor',[0.9 .9 .9],'EdgeColor','none','FaceAlpha',0.2);
% end
%
% view(90,-90)
% camlight('headlight')
% axis equal
% material dull
% lighting gouraud
% daspect([1 1 1])
%
% xlim([5 105])
% ylim([5 85])
% zlim([0 80])
% axis off
%
% Delta_color=T_Delta(:,T_timepoints(t));
% Alpha_color=T_Alpha(:,T_timepoints(t));
% Beta_color=T_Beta(:,T_timepoints(t));
% Theta_color=T_Theta(:,T_timepoints(t));
% Brightness=ones(1,N);
% for n=1:N
% if Beta_color(n)
% s(n).FaceColor=[(Brightness(n)+1)*0.5 0.5*(Brightness(n)+1) (Brightness(n)+1)*0.3];
% s(n).FaceAlpha=0.7;
% elseif Theta_color(n)
% s(n).FaceColor=[0.5*(Brightness(n)+1) (Brightness(n)+1)*0.3 (Brightness(n)+1)*0.3];
% s(n).FaceAlpha=0.7;
% elseif Alpha_color(n)
% s(n).FaceColor=[(Brightness(n)+1)*0.3 (Brightness(n)+1)*0.3 0.5*(Brightness(n)+1)];
% s(n).FaceAlpha=0.7;
% elseif Delta_color(n)
% s(n).FaceColor=[0.5*(Brightness(n)+1) 0.4*(Brightness(n)+1) 0.25*(Brightness(n)+1)];
% s(n).FaceAlpha=0.7;
% else
% s(n).FaceColor=[0.5+Brightness(n)*.2 0.5+Brightness(n)*.2 0.5+Brightness(n)*.2];
% s(n).FaceAlpha=0.1;
% end
% end
% title(['T = ' num2str(T_timepoints(t)*dt_save,'%3.2f') 's'])
% %pause(0.05)
% end
%
%