A collection of examples and tutorials on quantitative finance, numerical methods, stochastic processes, and simulation.
- brownian_bridge.ipynb: Brownian Bridge construction and applications.
- cos_method.ipynb: COS method for option pricing.
- dynamic_beta_kalman_filter.ipynb: Dynamic Beta model using Kalman filtering.
- euler_milstein.ipynb: Euler and Milstein schemes for SDEs.
- fractional_brownian_motion.ipynb: Fractional Brownian Motion construction.
- gaussian_mixture_models.ipynb: Gaussian Mixture Model and Expectation-Maximization algorithm.
- gaussian_pca.ipynb: Principal Component Analysis of two-dimensional Gaussian data.
- levy_construction_brownian_motion.ipynb: Lévy's construction of Brownian Motion.
- ica_pca.ipynb: Independent Component Analysis (ICA).
- inverse_gaussian.ipynb: Inverse Gaussian distribution and applications.
- pandas_datareader.ipynb: Examples using the Pandas Datareader package.
- yield_curve_pca.ipynb: PCA on yield curve data.
-
Clone the repository:
git clone https://github.com/fbourgey/quant-examples.git
-
Navigate to the project directory:
cd quant-examples -
Create a virtual environment:
python3 -m venv .venv
-
Activate the environment:
source .venv/bin/activate -
Install dependencies:
pip install . -
Launch Jupyter Lab (optional):
jupyter lab
If you have uv installed, setup is simpler and faster.
After cloning the repository (steps 1–2 above), run:
uv syncThis will automatically create a virtual environment and install all dependencies.