-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsign_language_prediction.py
112 lines (86 loc) · 3.32 KB
/
sign_language_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import tensorflow as tf
import tensorflow.keras
import cv2
import tkinter
from tkinter import *
import statistics
from statistics import mode
model = tensorflow.keras.models.load_model("sign_model.h5")
digit_array = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']
digits = cv2.imread("archive/digits.png")
white = cv2.imread("archive/white.png")
def predict_letter(image):
image = image.reshape((1, 28, 28, 1))
res = model.predict(image)
res = list(res[0])
mx = max(res)
return digit_array[res.index(mx)]
def view_signs():
cv2.imshow('Sign Digits', digits)
cv2.waitKey(0)
cv2.destroyAllWindows()
def run_digit_recognition():
cap = cv2.VideoCapture(0)
history = [""]
max_freq_array = ["" for _ in range(20)]
freq_num = 0
while True:
ret, frame = cap.read()
frame = cv2.flip(frame, 1)
grayFrame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# grayFrame = cv2.bitwise_not(grayFrame)
rect_img = grayFrame[100:400, 300:600]
resized_image = cv2.resize(rect_img, (28, 28))
# predict the sign
ans_letter = predict_letter(resized_image)
text = "Predicted Digit = " + ans_letter
# to find the most accurate predicted sign
max_freq_array[freq_num % 20] = ans_letter
freq_num += 1
current_best_number = mode(max_freq_array)
if history[0] != current_best_number:
history = [current_best_number] + history[:]
white_temp = white.copy()
cv2.putText(white_temp, "history",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (139, 0, 0), 2)
cv2.putText(white_temp, ",".join(history),
(10, 70), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (139, 0, 0), 2)
cv2.imshow('Recorded Predictions', white_temp)
# display captured images and grayscale
frame = cv2.rectangle(frame, (300, 100), (600, 400), (139, 0, 0), 5)
cv2.putText(frame, text,
(50, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (139, 0, 0), 2)
cv2.imshow('Video gray', rect_img)
cv2.imshow('Video original', frame)
# outline predicted sign in the sign chart
temp_ans = int(ans_letter)-1
pt1x = int(1161 * temp_ans / 9)
pt2x = int(1161 * (temp_ans + 1) / 9)
digits_temp = digits.copy()
digits_temp = cv2.rectangle(
digits_temp, (pt1x, 0), (pt2x, 240), (0, 255, 0), 5)
cv2.imshow('Digits Signs', digits_temp)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def tkintercallback():
run_digit_recognition()
def tkintercallback2():
view_signs()
root = tkinter.Tk()
root.title('Sign Language Prediction')
root.geometry("757x501")
bg = PhotoImage(file="archive/bg.png")
root = Canvas(root, width=757, height=501)
root.pack(fill="both", expand=True)
root.create_image(0, 0, image=bg, anchor="nw")
root.create_text(370, 40, fill="darkblue", font="Times 30 italic bold",
text="Welcome to Sign Language Prediction")
B = Button(root, text="Predict Gesture", fg='darkblue',
font="Times 27 italic bold", command=tkintercallback)
B2 = Button(root, text="View the Signs", fg='darkblue',
font="Times 27 italic bold", command=tkintercallback2)
B.place(x=60, y=350)
B2.place(x=460, y=350)
root.mainloop()