-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalbert_client.py
42 lines (35 loc) · 1.22 KB
/
albert_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# -*- coding: utf-8 -*-
# version=3.6.4
# @Author : fanzfeng
import numpy as np
class BertVector(object):
def __init__(self):
self.max_batch = 512
self.bc = None
self.connect()
# 需要根据服务端引入的模型更改模型维度
self.vec_dim = 312
def connect(self):
from bert_serving.client import BertClient
self.bc = BertClient(ip='127.0.0.1', port=5555, port_out=5556)
def predict_sentences(self, sentences):
num = len(sentences)
if num == 1:
return self.bc.encode(sentences)
elif num <= self.max_batch:
return self.bc.encode(sentences)
else:
m, n = num // self.max_batch, num % self.max_batch
if n > 0:
m += 1
res = [self.bc.encode(sentences[i * self.max_batch:min((i + 1) * self.max_batch, num)]) for i in range(m)]
return np.concatenate(res, axis=0)
def text2vec(self, sentences):
try:
return self.predict_sentences(sentences)
except:
self.connect()
return self.predict_sentences(sentences)
if __name__ == "__main__":
model = BertVector()
print(model.text2vec(["我们去不去"]))