-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTreeType.cpp
509 lines (444 loc) · 12 KB
/
TreeType.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
#include <iostream>
#include "TreeType.h"
using namespace std;
struct TreeNode
{
ItemType info;
TreeNode* left;
TreeNode* right;
};
bool TreeType::IsFull() const
// Returns true if there is no room for another item
// on the free store; false otherwise.
{
TreeNode* location;
try
{
location = new TreeNode;
delete location;
return false;
}
catch(std::bad_alloc exception)
{
return true;
}
}
bool TreeType::IsEmpty() const
// Returns true if the tree is empty; false otherwise.
{
return root == NULL;
}
int CountNodes(TreeNode* tree);
int TreeType::GetLength() const
// Calls recursive function CountNodes to count the
// nodes in the tree.
{
return CountNodes(root);
}
int CountNodes(TreeNode* tree)
// Post: returns the number of nodes in the tree.
{
if (tree == NULL)
return 0;
else
return CountNodes(tree->left) + CountNodes(tree->right) + 1;
}
void Retrieve(TreeNode* tree,
ItemType& item, bool& found);
ItemType TreeType::GetItem(ItemType item, bool& found)
// Calls recursive function Retrieve to search the tree for item.
{
Retrieve(root, item, found);
return item;
}
void Retrieve(TreeNode* tree,
ItemType& item, bool& found)
// Recursively searches tree for item.
// Post: If there is an element someItem whose key matches item's,
// found is true and item is set to a copy of someItem;
// otherwise found is false and item is unchanged.
{
if (tree == NULL)
found = false; // item is not found.
else if (item < tree->info)
Retrieve(tree->left, item, found); // Search left subtree.
else if (item > tree->info)
Retrieve(tree->right, item, found);// Search right subtree.
else
{
item = tree->info; // item is found.
found = true;
}
}
void Insert(TreeNode*& tree, ItemType item);
void TreeType::PutItem(ItemType item)
// Calls recursive function Insert to insert item into tree.
{
Insert(root, item);
}
void Insert(TreeNode*& tree, ItemType item)
// Inserts item into tree.
// Post: item is in tree; search property is maintained.
{
if (tree == NULL)
{// Insertion place found.
tree = new TreeNode;
tree->right = NULL;
tree->left = NULL;
tree->info = item;
}
else if (item < tree->info)
Insert(tree->left, item); // Insert in left subtree.
else
Insert(tree->right, item); // Insert in right subtree.
}
void DeleteNode(TreeNode*& tree);
void Delete(TreeNode*& tree, ItemType item);
void TreeType::DeleteItem(ItemType item)
// Calls recursive function Delete to delete item from tree.
{
Delete(root, item);
}
void Delete(TreeNode*& tree, ItemType item)
// Deletes item from tree.
// Post: item is not in tree.
{
if (item < tree->info)
Delete(tree->left, item); // Look in left subtree.
else if (item > tree->info)
Delete(tree->right, item); // Look in right subtree.
else
DeleteNode(tree); // Node found; call DeleteNode.
}
void GetPredecessor(TreeNode* tree, ItemType& data);
void DeleteNode(TreeNode*& tree)
// Deletes the node pointed to by tree.
// Post: The user's data in the node pointed to by tree is no
// longer in the tree. If tree is a leaf node or has only
// non-NULL child pointer the node pointed to by tree is
// deleted; otherwise, the user's data is replaced by its
// logical predecessor and the predecessor's node is deleted.
{
ItemType data;
TreeNode* tempPtr;
tempPtr = tree;
if (tree->left == NULL)
{
tree = tree->right;
delete tempPtr;
}
else if (tree->right == NULL)
{
tree = tree->left;
delete tempPtr;
}
else
{
GetPredecessor(tree->left, data);
tree->info = data;
Delete(tree->left, data); // Delete predecessor node.
}
}
void GetPredecessor(TreeNode* tree, ItemType& data)
// Sets data to the info member of the right-most node in tree.
{
while (tree->right != NULL)
tree = tree->right;
data = tree->info;
}
void PrintTree(TreeNode* tree, std::ofstream& outFile)
// Prints info member of items in tree in sorted order on outFile.
{
if (tree != NULL)
{
PrintTree(tree->left, outFile); // Print left subtree.
outFile << tree->info;
cout << tree->info;
PrintTree(tree->right, outFile); // Print right subtree.
}
}
void TreeType::Print(std::ofstream& outFile) const
// Calls recursive function Print to print items in the tree.
{
PrintTree(root, outFile);
}
TreeType::TreeType()
{
root = NULL;
}
void Destroy(TreeNode*& tree);
TreeType::~TreeType()
// Calls recursive function Destroy to destroy the tree.
{
Destroy(root);
}
void Destroy(TreeNode*& tree)
// Post: tree is empty; nodes have been deallocated.
{
if (tree != NULL)
{
Destroy(tree->left);
Destroy(tree->right);
delete tree;
}
}
void TreeType::MakeEmpty()
{
Destroy(root);
root = NULL;
}
void CopyTree(TreeNode*& copy,
const TreeNode* originalTree);
TreeType::TreeType(const TreeType& originalTree)
// Calls recursive function CopyTree to copy originalTree
// into root.
{
CopyTree(root, originalTree.root);
}
void TreeType::operator=
(const TreeType& originalTree)
// Calls recursive function CopyTree to copy originalTree
// into root.
{
{
if (&originalTree == this)
return; // Ignore assigning self to self
Destroy(root); // Deallocate existing tree nodes
CopyTree(root, originalTree.root);
}
}
void CopyTree(TreeNode*& copy,
const TreeNode* originalTree)
// Post: copy is the root of a tree that is a duplicate
// of originalTree.
{
if (originalTree == NULL)
copy = NULL;
else
{
copy = new TreeNode;
copy->info = originalTree->info;
CopyTree(copy->left, originalTree->left);
CopyTree(copy->right, originalTree->right);
}
}
// Function prototypes for auxiliary functions.
void PreOrder(TreeNode*, QueType&);
// Enqueues tree items in preorder.
void InOrder(TreeNode*, QueType&);
// Enqueues tree items in inorder.
void PostOrder(TreeNode*, QueType&);
// Enqueues tree items in postorder.
void TreeType::ResetTree(OrderType order)
// Calls function to create a queue of the tree elements in
// the desired order.
{
switch (order)
{
case PRE_ORDER : PreOrder(root, preQue);
break;
case IN_ORDER : InOrder(root, inQue);
break;
case POST_ORDER: PostOrder(root, postQue);
break;
}
}
void PreOrder(TreeNode* tree,
QueType& preQue)
// Post: preQue contains the tree items in preorder.
{
if (tree != NULL)
{
preQue.Enqueue(tree->info);
PreOrder(tree->left, preQue);
PreOrder(tree->right, preQue);
}
}
void InOrder(TreeNode* tree,
QueType& inQue)
// Post: inQue contains the tree items in inorder.
{
if (tree != NULL)
{
InOrder(tree->left, inQue);
inQue.Enqueue(tree->info);
InOrder(tree->right, inQue);
}
}
void PostOrder(TreeNode* tree,
QueType& postQue)
// Post: postQue contains the tree items in postorder.
{
if (tree != NULL)
{
PostOrder(tree->left, postQue);
PostOrder(tree->right, postQue);
postQue.Enqueue(tree->info);
}
}
void AddElements(TreeType &tree, int info[], int toIndex, int fromIndex);
ItemType TreeType::GetNextItem(ItemType& item, OrderType order, bool& finished)
// Returns the next item in the desired order.
// Post: For the desired order, item is the next item in the queue.
// If item is the last one in the queue, finished is true;
// otherwise finished is false.
{
finished = false;
switch (order)
{
case PRE_ORDER : preQue.Dequeue(item);
if (preQue.IsEmpty())
finished = true;
break;
case IN_ORDER : inQue.Dequeue(item);
if (inQue.IsEmpty())
finished = true;
break;
case POST_ORDER: postQue.Dequeue(item);
if (postQue.IsEmpty())
finished = true;
break;
}
return item;
}
// Exercise 6 --------------------------------------------------------------
void PrintAncestors(TreeNode* tree, ItemType& item, bool& found, std::ofstream& outFile);
ItemType TreeType::Ancestors(ItemType item, bool& found, std::ofstream& outFile)
// Calls recursive function PrintAncestors to print the item's ancestors.
{
PrintAncestors(root, item, found, outFile);
return item;
}
void PrintAncestors(TreeNode* tree, ItemType& item, bool& found, std::ofstream& outFile)
// Function: Prints ancestors of a given item
// Precondition: Stores elements while traversing the tree to search for the item.
// Postcondition: If there is an element someItem whose key matches item's,
// found is true and ancestors are printed out else found is false and nothing is printed.
{
int flag = 1;
outFile << tree->info << endl;
cout << tree->info << endl;
do{
if (tree == NULL)
{
found = false;
flag = 0;
break;
}
else if (item < tree->info)
{
tree = tree->left; // Ancestor in left tree
if (item == tree->info)
{
break;
}
else
{
outFile << tree->info << endl;
cout << tree->info << endl;
}
}
else if (item > tree->info)
{
tree = tree->right; // Ancestor in right tree
if (item == tree->info)
{
break;
}
else
{
outFile << tree->info << endl;
cout << tree->info << endl;
}
}
else
{
item = tree->info;
found = true; // If item is present
flag = 0;
break;
}
}while(flag == 1);
}
//
void PrintAncestorsReverse(TreeNode* tree, ItemType& item, bool& found, std::ofstream& outFile);
ItemType TreeType::AncestorsReverse(ItemType item, bool& found, std::ofstream& outFile)
// Calls recursive function PrintAncestors to print the item's ancestors.
{
PrintAncestorsReverse(root, item, found, outFile);
return 0;
}
// Function: Prints ancestors of a given item
// Precondition: Stores elements while traversing the tree to search for the item.
// Postcondition: If there is an element someItem whose key matches item's,
// found is true and ancestors are printed out else found is false and nothing is printed.
void PrintAncestorsReverse(TreeNode* tree, ItemType& item, bool& found, std::ofstream& outFile)
{
if (tree == NULL)
found = false; // item is not found.
else if (item < tree->info)
{
PrintAncestorsReverse(tree->left, item, found, outFile); // Search left subtree.
outFile << tree->info << endl;
cout << tree->info << endl;
}
else if (item > tree->info)
{
PrintAncestorsReverse(tree->right, item, found, outFile);// Search right subtree.
outFile << tree->info << endl;
cout << tree->info << endl;
}
else
{
item = tree->info; // item is found.
found = true;
}
}
// count leaves function
int Leaves(TreeNode* tree);
ItemType TreeType::LeafCount(int leaves)
{
leaves = Leaves(root);
return leaves;
}
int Leaves(TreeNode* tree)
{
if( tree == NULL )
{
return 0;
}
if( tree->left == NULL && tree->right == NULL )
{
return 1;
}
else
{
return Leaves(tree->left) + Leaves(tree->right);
}
}
// Single Parent Function
int SingleParent(TreeNode* tree);
ItemType TreeType::SingleParentCount(int spcount)
{
spcount = SingleParent(root);
return spcount;
}
int SingleParent(TreeNode* tree)
{
// Took idea from http://stackoverflow.com/questions/27219895/java-counting-single-parents-in-a-binary-search-tree
int count = 0;
if (tree != NULL)
{
if( (tree->left == NULL && tree->right != NULL))
{
count++;
}
else if( tree->left != NULL && tree->right == NULL )
{
count++;
}
count += SingleParent(tree->left);
count += SingleParent(tree->right);
}
return count;
}