-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathplot_line.py
executable file
·48 lines (36 loc) · 1.21 KB
/
plot_line.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/usr/bin/env python3
import sys
import argparse
import matplotlib.ticker as tck
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument("-o", "--output", help="Write rendered plot to this file.")
args = parser.parse_args()
output_file = args.output
df = pd.read_csv(sys.stdin)
col_names = df.columns[3:].values
problem_sizes = list(map(lambda c: int(c.removeprefix('lineage-')), col_names))
# Plot the data
plt.figure(figsize=(12, 8))
colormap = plt.cm.nipy_spectral
colors = colormap(np.linspace(0, 1, len(df['model_name'])))
plt.gca().set_prop_cycle('color', colors)
for index, row in df.iterrows():
plt.plot(problem_sizes, row[col_names], marker='o', label=row['model_name'])
# Customize the plot
plt.title('Lineage benchmark scores for different problem sizes.')
plt.xlabel('Problem Size')
plt.ylabel('Lineage Score')
plt.legend(title='Model Name', loc='upper right')
plt.xscale('log')
plt.gca().get_xaxis().set_minor_locator(tck.AutoMinorLocator())
plt.xticks([8, 16, 32, 64])
plt.gca().get_xaxis().set_major_formatter(tck.ScalarFormatter())
plt.grid(True)
plt.tight_layout()
if output_file:
plt.savefig(output_file)
# Show the plot
plt.show()