@@ -11,9 +11,9 @@ import bofire.data_models.domain.api as dm_domain
11
11
import bofire.data_models.features.api as dm_features
12
12
import bofire.data_models.strategies.api as dm_strategies
13
13
14
- in1 = dm_features.ContinuousInput(key = " in1" , bounds = ( 0.0 ,1.0 ) )
15
- in2 = dm_features.ContinuousInput(key = " in2" , bounds = ( 0.0 ,2.0 ) )
16
- in3 = dm_features.ContinuousInput(key = " in3" , bounds = ( 0.0 ,3.0 ) )
14
+ in1 = dm_features.ContinuousInput(key = " in1" , bounds = [ 0.0 ,1.0 ] )
15
+ in2 = dm_features.ContinuousInput(key = " in2" , bounds = [ 0.0 ,2.0 ] )
16
+ in3 = dm_features.ContinuousInput(key = " in3" , bounds = [ 0.0 ,3.0 ] )
17
17
18
18
out1 = dm_features.ContinuousOutput(key = " out1" )
19
19
@@ -33,14 +33,13 @@ data_model = dm_strategies.RandomStrategy(domain=domain)
33
33
Such a data model can be (de)serialized as follows:
34
34
35
35
``` python
36
- import json
37
- from pydantic import parse_obj_as
36
+ from pydantic import TypeAdapter
38
37
from bofire.data_models.strategies.api import AnyStrategy
39
38
40
39
serialized = data_model.model_dump_json()
41
- data = json.loads(serialized)
42
- # alternative: data = data_model.dict( )
43
- data_model_ = parse_obj_as(AnyStrategy, data)
40
+
41
+ data_model_ = TypeAdapter(AnyStrategy).validate_json(serialized )
42
+
44
43
assert data_model_ == data_model
45
44
```
46
45
The data model of a strategy contains its hyperparameters.
0 commit comments