|
| 1 | +/** |
| 2 | + * @param {number} n |
| 3 | + * @param {number[][]} requirements |
| 4 | + * @return {number} |
| 5 | + */ |
| 6 | +var numberOfPermutations = function(n, requirements) { |
| 7 | + // setup map/vector for tracking inversions |
| 8 | + let inv = new Array(n + 1).fill(-1); |
| 9 | + for (let req of requirements) { |
| 10 | + if (inv[req[0] + 1] === -1) { |
| 11 | + inv[req[0] + 1] = req[1]; |
| 12 | + } else { |
| 13 | + return 0; |
| 14 | + } |
| 15 | + } |
| 16 | + |
| 17 | + // sanity check |
| 18 | + // if length of the sequence is l |
| 19 | + // then there can be at most l*(l-1)/2 inversion pairs |
| 20 | + // in the case of decreasing order |
| 21 | + for (let i = 1; i <= n; i++) { |
| 22 | + if (inv[i] > (i * (i - 1)) / 2) { |
| 23 | + return 0; |
| 24 | + } |
| 25 | + } |
| 26 | + |
| 27 | + // dp[len][inv] |
| 28 | + // solution for the prefix of length len, and inv inversion pairs |
| 29 | + |
| 30 | + // setup dp |
| 31 | + const m = 400; |
| 32 | + const MOD = 1e9 + 7; |
| 33 | + let dp = Array.from({ length: n + 1 }, () => new Array(m + 1).fill(0)); |
| 34 | + |
| 35 | + // base case |
| 36 | + // i == 0, dp[0][j] = 0, j > 1, in memset |
| 37 | + // i == 0 && j == 0, dp[0][0] = 1 |
| 38 | + dp[0][0] = 1; |
| 39 | + |
| 40 | + /* |
| 41 | + Note: |
| 42 | + suppose we have a sequence of length (l-1), and we want to extend it to |
| 43 | + a sequence of length l, then what can happen to the number of inversion? |
| 44 | +
|
| 45 | + you can increase the number of inversions by at most (l-1). |
| 46 | +
|
| 47 | + so we need to check dp[i-1][j] for dp[i][c] |
| 48 | + where j = c-0, c-1, ..... , c-(l-1) |
| 49 | + */ |
| 50 | + |
| 51 | + // recursion |
| 52 | + for (let i = 1; i <= n; i++) { // length |
| 53 | + // case 1, we have a requirement given |
| 54 | + // then just iterate for that value, |
| 55 | + if (inv[i] !== -1) { |
| 56 | + for (let k = 0; k < i; k++) { |
| 57 | + if (inv[i] - k < 0) break; |
| 58 | + dp[i][inv[i]] = (dp[i][inv[i]] + dp[i - 1][inv[i] - k]) % MOD; |
| 59 | + } |
| 60 | + } |
| 61 | + // case 2 when we don't have any given requirement |
| 62 | + // then iterate over all the values |
| 63 | + else { |
| 64 | + for (let c = 0; c <= m; c++) { |
| 65 | + // maximum number of inversions |
| 66 | + if (c > (i * (i - 1)) / 2) break; |
| 67 | + |
| 68 | + for (let k = 0; k < i; k++) { |
| 69 | + if (c - k < 0) break; |
| 70 | + dp[i][c] = (dp[i][c] + dp[i - 1][c - k]) % MOD; |
| 71 | + } |
| 72 | + } |
| 73 | + } |
| 74 | + } |
| 75 | + |
| 76 | + // return the ans |
| 77 | + return dp[n][inv[n]]; |
| 78 | +}; |
0 commit comments