|
| 1 | +/** |
| 2 | + * @param {number} n |
| 3 | + * @param {number[][]} edges |
| 4 | + * @return {number[]} |
| 5 | + */ |
| 6 | +const countSubgraphsForEachDiameter = function (n, edges) { |
| 7 | + const graph = {}; |
| 8 | + for (let [u, v] of edges) { |
| 9 | + if (!graph[u - 1]) graph[u - 1] = []; |
| 10 | + if (!graph[v - 1]) graph[v - 1] = []; |
| 11 | + graph[u - 1].push(v - 1); |
| 12 | + graph[v - 1].push(u - 1); |
| 13 | + } |
| 14 | + let ans = Array(n - 1).fill(0); |
| 15 | + for (let i = 1, len = 2 ** n; i < len; i++) { |
| 16 | + const d = maxDistance(i); |
| 17 | + if (d > 0) ans[d - 1] += 1; |
| 18 | + } |
| 19 | + return ans; |
| 20 | + function bfs(src, cities) { |
| 21 | + const visited = new Set(); |
| 22 | + visited.add(src); |
| 23 | + const q = [[src, 0]]; // Pair of (vertex, distance) |
| 24 | + let farthestDist = 0; // Farthest distance from src to other nodes |
| 25 | + while (q.length > 0) { |
| 26 | + const [u, d] = q.shift(); |
| 27 | + farthestDist = d; |
| 28 | + for (let v of graph[u]) { |
| 29 | + if (!visited.has(v) && cities.has(v)) { |
| 30 | + visited.add(v); |
| 31 | + q.push([v, d + 1]); |
| 32 | + } |
| 33 | + } |
| 34 | + } |
| 35 | + return [farthestDist, visited]; |
| 36 | + } |
| 37 | + function maxDistance(state) { |
| 38 | + // return: maximum distance between any two cities in our subset. O(n^2) |
| 39 | + const cities = new Set(); |
| 40 | + for (let i = 0; i < n; i++) { |
| 41 | + if ((state >> i) & (1 === 1)) cities.add(i); |
| 42 | + } |
| 43 | + let ans = 0; |
| 44 | + for (let i of cities) { |
| 45 | + const [farthestDist, visited] = bfs(i, cities); |
| 46 | + if (visited.size < cities.size) return 0; // Can't visit all nodes of the tree -> Invalid tree |
| 47 | + ans = Math.max(ans, farthestDist); |
| 48 | + } |
| 49 | + return ans; |
| 50 | + } |
| 51 | +}; |
0 commit comments