|
| 1 | +/** |
| 2 | + * @param {number} k |
| 3 | + * @param {number[][]} rowConditions |
| 4 | + * @param {number[][]} colConditions |
| 5 | + * @return {number[][]} |
| 6 | + */ |
| 7 | +const initializeGraph = (n) => { |
| 8 | + let g = [] |
| 9 | + for (let i = 0; i < n; i++) { |
| 10 | + g.push([]) |
| 11 | + } |
| 12 | + return g |
| 13 | +} |
| 14 | +const packDGInDegree = (g, edges, indegree) => { |
| 15 | + for (const [u, v] of edges) { |
| 16 | + g[u].unshift(v) |
| 17 | + indegree[v]++ |
| 18 | + } |
| 19 | +} |
| 20 | +const initialize2DArray = (n, m) => { |
| 21 | + let d = [] |
| 22 | + for (let i = 0; i < n; i++) { |
| 23 | + let t = Array(m).fill(0) |
| 24 | + d.push(t) |
| 25 | + } |
| 26 | + return d |
| 27 | +} |
| 28 | + |
| 29 | +const buildMatrix = (k, rowConditions, colConditions) => { |
| 30 | + let gr = make(k, rowConditions), |
| 31 | + gc = make(k, colConditions), |
| 32 | + d = initialize2DArray(k, 2), |
| 33 | + res = initialize2DArray(k, k) |
| 34 | + if (gr.length == 0 || gc.length == 0) return [] |
| 35 | + for (let i = 0; i < k; i++) { |
| 36 | + d[gr[i] - 1][0] = i |
| 37 | + d[gc[i] - 1][1] = i |
| 38 | + } |
| 39 | + for (let i = 0; i < k; i++) { |
| 40 | + let [x, y] = d[i] |
| 41 | + res[x][y] = i + 1 |
| 42 | + } |
| 43 | + return res |
| 44 | +} |
| 45 | + |
| 46 | +const make = (n, edges) => { |
| 47 | + let g = initializeGraph(n + 1), |
| 48 | + deg = Array(n + 1).fill(0) |
| 49 | + packDGInDegree(g, edges, deg) |
| 50 | + return topologicalSort_start_1(g, deg) |
| 51 | +} |
| 52 | + |
| 53 | +const topologicalSort_start_1 = (g, indegree) => { |
| 54 | + let res = [], |
| 55 | + q = [], |
| 56 | + n = g.length - 1 |
| 57 | + for (let i = 1; i <= n; i++) { |
| 58 | + if (indegree[i] == 0) q.push(i) |
| 59 | + } |
| 60 | + while (q.length) { |
| 61 | + let cur = q.shift() |
| 62 | + res.push(cur) |
| 63 | + for (const child of g[cur]) { |
| 64 | + indegree[child]-- |
| 65 | + if (indegree[child] == 0) q.push(child) |
| 66 | + } |
| 67 | + } |
| 68 | + for (let i = 1; i <= n; i++) { |
| 69 | + if (indegree[i] > 0) return [] |
| 70 | + } |
| 71 | + return res |
| 72 | +} |
0 commit comments