|
| 1 | +/** |
| 2 | +
|
| 3 | +You are given two sorted arrays of distinct integers nums1 and nums2. |
| 4 | +
|
| 5 | +A valid path is defined as follows: |
| 6 | +
|
| 7 | +Choose array nums1 or nums2 to traverse (from index-0). |
| 8 | +Traverse the current array from left to right. |
| 9 | +If you are reading any value that is present in nums1 and nums2 you are |
| 10 | +allowed to change your path to the other array. |
| 11 | +(Only one repeated value is considered in the valid path). |
| 12 | +Score is defined as the sum of uniques values in a valid path. |
| 13 | +
|
| 14 | +Return the maximum score you can obtain of all possible valid paths. |
| 15 | +
|
| 16 | +Since the answer may be too large, return it modulo 10^9 + 7. |
| 17 | +
|
| 18 | +Example 1: |
| 19 | +
|
| 20 | +Input: nums1 = [2,4,5,8,10], nums2 = [4,6,8,9] |
| 21 | +Output: 30 |
| 22 | +Explanation: Valid paths: |
| 23 | +[2,4,5,8,10], [2,4,5,8,9], [2,4,6,8,9], [2,4,6,8,10], (starting from nums1) |
| 24 | +[4,6,8,9], [4,5,8,10], [4,5,8,9], [4,6,8,10] (starting from nums2) |
| 25 | +The maximum is obtained with the path in green [2,4,6,8,10]. |
| 26 | +
|
| 27 | +Example 2: |
| 28 | +
|
| 29 | +Input: nums1 = [1,3,5,7,9], nums2 = [3,5,100] |
| 30 | +Output: 109 |
| 31 | +Explanation: Maximum sum is obtained with the path [1,3,5,100]. |
| 32 | +Example 3: |
| 33 | +
|
| 34 | +Input: nums1 = [1,2,3,4,5], nums2 = [6,7,8,9,10] |
| 35 | +Output: 40 |
| 36 | +Explanation: There are no common elements between nums1 and nums2. |
| 37 | +Maximum sum is obtained with the path [6,7,8,9,10]. |
| 38 | +Example 4: |
| 39 | +
|
| 40 | +Input: nums1 = [1,4,5,8,9,11,19], nums2 = [2,3,4,11,12] |
| 41 | +Output: 61 |
| 42 | + |
| 43 | +
|
| 44 | +Constraints: |
| 45 | +
|
| 46 | +1 <= nums1.length <= 10^5 |
| 47 | +1 <= nums2.length <= 10^5 |
| 48 | +1 <= nums1[i], nums2[i] <= 10^7 |
| 49 | +nums1 and nums2 are strictly increasing. |
| 50 | +
|
| 51 | +*/ |
| 52 | + |
| 53 | +/** |
| 54 | + * @param {number[]} nums1 |
| 55 | + * @param {number[]} nums2 |
| 56 | + * @return {number} |
| 57 | + */ |
| 58 | +const maxSum = function(nums1, nums2) { |
| 59 | + let i = 0, j = 0, n = nums1.length, m = nums2.length; |
| 60 | + let a = 0, b = 0, mod = 10 ** 9 + 7; |
| 61 | + while (i < n || j < m) { |
| 62 | + if (i < n && (j === m || nums1[i] < nums2[j])) { |
| 63 | + a += nums1[i++]; |
| 64 | + } else if (j < m && (i === n || nums1[i] > nums2[j])) { |
| 65 | + b += nums2[j++]; |
| 66 | + } else { |
| 67 | + a = b = Math.max(a, b) + nums1[i]; |
| 68 | + i++; j++; |
| 69 | + } |
| 70 | + } |
| 71 | + return Math.max(a, b) % mod; |
| 72 | +}; |
0 commit comments