-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel-rnn-predict.py
272 lines (247 loc) · 8.91 KB
/
model-rnn-predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# %%
# RNN (Simple, GRU, LSTM) for Vehicle-based Fuel Consumption and Emissions Rate Estimation
# Ehsan Moradi, Ph.D. Candidate
# %%
# Import required libraries
# Define a class for tracking the progress of model training
import keras
import pandas as pd
import numpy as np
import time
import resource
import h5py
from keras import Sequential, backend
from keras.layers import Dense, GRU, LSTM
from keras.callbacks import EarlyStopping
from sklearn.preprocessing import StandardScaler
from datetime import datetime
# %%
# Callback to track the memory usage after training each model
class MemoryCallback(keras.callbacks.Callback):
def on_train_end(self, log={}):
print(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss)
# %%
# Load settings of best models
def load_best_model_settings(sheet):
directory = "../../Google Drive/Academia/PhD Thesis/Charts, Tables, Forms, Flowcharts, Spreadsheets, Figures/"
input_file = "Paper III - RNN Ranking.xlsx"
input_path = directory + input_file
lst = pd.read_excel(input_path, sheet_name=sheet, header=0)
return lst
# %%
# Load sample data from Excel to a pandas dataframe
def load_from_Excel(sensor, vehicle, settings):
input_type = settings["INPUT_TYPE"]
input_index = settings["INPUT_INDEX"]
directory = (
"../../Google Drive/Academia/PhD Thesis/Field Experiments/"
+ sensor
+ "/"
+ vehicle
+ "/Processed/"
+ input_type
+ "/"
)
input_file = "{0} - {1} - {2}.xlsx".format(vehicle, input_type, input_index)
input_path = directory + input_file
df = pd.read_excel(input_path, sheet_name="Sheet1", header=0)
return df
# %%
# Save the predicted field back to Excel file
def save_to_excel(df, sensor, vehicle, settings):
output_type = settings["OUTPUT_TYPE"]
output_index = settings["OUTPUT_INDEX"]
directory = (
"../../Google Drive/Academia/PhD Thesis/Field Experiments/"
+ sensor
+ "/"
+ vehicle
+ "/Processed/"
+ output_type
+ "/"
)
output_file = "{0} - {1} - {2}.xlsx".format(vehicle, output_type, output_index)
output_path = directory + output_file
with pd.ExcelWriter(output_path, engine="openpyxl", mode="w") as writer:
df.to_excel(writer, header=True, index=None)
print("{0} -> Data is saved to Excel successfully!".format(vehicle))
return None
# %%
# Save fitted model to .h5 file
def save_to_h5(model, vehicle, dependent, lookback, settings):
output_type = settings["OUTPUT_TYPE"]
directory = (
"../../Google Drive/Academia/PhD Thesis/Modeling Outputs/" + output_type + "/"
)
output_file = "{0} - {1} - {2} - L{3}.h5".format(
vehicle, output_type, dependent, lookback
)
output_path = directory + output_file
model.save(output_path)
# %%
# Scale the input data
def scale(df, features, dependent):
df_temp = df.copy()
scaler_X = StandardScaler().fit(df_temp[features])
scaler_y = StandardScaler().fit(df_temp[[dependent]])
df_temp[features] = scaler_X.transform(df_temp[features])
df_temp[[dependent]] = scaler_y.transform(df_temp[[dependent]])
return df_temp, scaler_X, scaler_y
# %%
# Generate time-series input for the desired lookback order
def generate_rnn_input(df, features, dependent, lookback):
dataset = df[features + [dependent]].to_numpy()
dim = len(features)
X, y = [], []
for i in range(lookback, len(dataset)):
X.append(dataset[i - lookback : i + 1, :dim])
y.append(dataset[i, dim])
X, y = np.array(X), np.array(y)
return X, y
# %%
# Split data into train and test parts
def split(X, y, test_split_ratio, batch_size):
n_examples = len(X)
split_index = int(n_examples * (1 - test_split_ratio))
train_X, test_X = X[:split_index], X[split_index:]
train_y, test_y = y[:split_index], y[split_index:]
trim_train = len(train_X) - len(train_X) % batch_size
trim_test = len(test_X) - len(test_X) % batch_size
train_X, test_X = train_X[:trim_train], test_X[:trim_test]
train_y, test_y = train_y[:trim_train], test_y[:trim_test]
return train_X, train_y, test_X, test_y
# %%
# Definition of the custom loss function
def rmse(y_true, y_pred):
return backend.sqrt(backend.mean(backend.square(y_pred - y_true)))
# %%
# Define RNN model
def define_model(rnn_type, lookback, n_stacks, settings):
n_features = len(settings["FEATURES"])
batch_size = settings["BATCH_SIZE"]
drop_prop = settings["DROP_PROP"]
n_units = settings["N_UNITS"]
common_args = (
"n_units, dropout=drop_prop, recurrent_dropout=drop_prop, stateful=True"
)
model = Sequential() # Default activation function is tanh
if n_stacks == 1:
model.add(
eval(
rnn_type
+ "("
+ common_args
+ ", batch_input_shape=(batch_size, lookback + 1, n_features)"
+ ")"
)
)
elif n_stacks == 2:
model.add(
eval(
rnn_type
+ "("
+ common_args
+ ", batch_input_shape=(batch_size, lookback + 1, n_features), return_sequences=True"
+ ")"
)
)
model.add(eval(rnn_type + "(" + common_args + ")"))
else:
model.add(
eval(
rnn_type
+ "("
+ common_args
+ ", batch_input_shape=(batch_size, lookback + 1, n_features), return_sequences=True"
+ ")"
)
)
for _ in range(n_stacks - 2):
model.add(
eval(rnn_type + "(" + common_args + ", return_sequences=True" + ")")
)
model.add(eval(rnn_type + "(" + common_args + ")"))
model.add(Dense(1, activation="linear"))
return model
# %%
# Train the RNN model by testing alternative architectures (different lookback orders, hidden units, and stacks)
def train_rnn(df, model, vehicle, dependent, lookback, settings):
start_timestamp = time.time()
start_datetime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
features = settings["FEATURES"]
test_split_ratio = settings["TEST_SPLIT_RATIO"]
batch_size = settings["BATCH_SIZE"]
n_epochs = settings["N_EPOCHS"]
loss = settings["LOSS"]
predicted = dependent + "_PRED_L{0}".format(lookback)
df_temp, scaler_X, scaler_y = scale(df, features, dependent)
X, y = generate_rnn_input(df_temp, features, dependent, lookback)
train_X, train_y, test_X, test_y = split(X, y, test_split_ratio, batch_size)
model.compile(loss=loss, optimizer=settings["OPTIMIZER"])
model.fit(
train_X,
train_y,
batch_size=batch_size,
epochs=n_epochs,
validation_data=(test_X, test_y),
verbose=0,
callbacks=[
MemoryCallback(),
EarlyStopping(
monitor="val_loss", min_delta=0, patience=10, verbose=0, mode="min"
),
],
)
save_to_h5(model, vehicle, dependent, lookback, settings)
trim_size = len(X) % batch_size
trim_index = len(X) - trim_size
X = X[:trim_index]
y_predict = model.predict(X, batch_size=batch_size)
y_predict = scaler_y.inverse_transform(y_predict)
y_predict = np.insert(y_predict, 0, np.repeat(np.nan, lookback))
y_predict = np.append(y_predict, np.repeat(np.nan, trim_size))
df[predicted] = y_predict
del model
backend.clear_session()
end_datetime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
elapsed_time = round(time.time() - start_timestamp, 1)
return df
# %%
# Model execution and input/output settings
pd.options.mode.chained_assignment = None
SETTINGS = {
"FEATURES": ["SPD_KH", "ACC_MS2", "ALT_M"],
"N_UNITS": 100,
"N_EPOCHS": 200,
"TEST_SPLIT_RATIO": 0.3,
"DROP_PROP": 0.5,
"BATCH_SIZE": 64,
"LOSS": rmse,
"OPTIMIZER": "adam",
"INPUT_INDEX": "04",
"INPUT_TYPE": "NONE",
"OUTPUT_INDEX": "05",
"OUTPUT_TYPE": "RNN",
}
# %%
# Batch execution on trips of all included vehicles
# loop through PEMS-included experiments only or obd-only data (depending on desired output)
best_model_settings = load_best_model_settings("Best Model Settings (1-6)")
old_vehicle = ""
for index, model_setting in best_model_settings.iterrows():
vehicle = model_setting["VEHICLE"]
dependent = model_setting["DEPENDENT"]
rnn_type = model_setting["RNN_TYPE"]
lookback = model_setting["LOOKBACK"]
n_stacks = model_setting["N_STACKS"]
sensor = "Veepeak" if dependent == "FCR_LH" else "3DATX parSYNC Plus"
if vehicle != old_vehicle:
if old_vehicle != "":
save_to_excel(df, old_sensor, old_vehicle, SETTINGS)
df = load_from_Excel(sensor, vehicle, SETTINGS)
print(vehicle, dependent, lookback)
model = define_model(rnn_type, lookback, n_stacks, SETTINGS)
df = train_rnn(df, model, vehicle, dependent, lookback, SETTINGS)
old_vehicle, old_sensor = vehicle, sensor
del model
# %%