-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel-ensemble-category.py
325 lines (300 loc) · 12 KB
/
model-ensemble-category.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# %%
# Generalizing Fuel and Emission Models to Categories using Ensemble Learning
# Ehsan Moradi, Ph.D. Candidate
# %%
# Import required libraries
import pandas as pd
import numpy as np
import csv
import keras
import h5py
import pickle
import resource
import gc
from keras.models import load_model
from sklearn.ensemble import (
GradientBoostingRegressor,
AdaBoostRegressor,
RandomForestRegressor,
)
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.model_selection import train_test_split, ParameterGrid
from sklearn.utils import check_random_state
from sklearn.preprocessing import StandardScaler
# %%
# Load settings of best models
def load_best_ensemble_settings(sheet):
directory = "../../Google Drive/Academia/PhD Thesis/Charts, Tables, Forms, Flowcharts, Spreadsheets, Figures/"
input_file = "Paper III - Ensemble Lookback Ranking.xlsx"
input_path = directory + input_file
settings = pd.read_excel(input_path, sheet_name=sheet, header=0)
return settings
# %%
# Load data from Excel to a pandas dataframe
def load_test_vehicle_data(sensor, vehicle):
directory = "../../Google Drive/Academia/PhD Thesis/Field Experiments/{0}/{1}/Processed/RNN/".format(
sensor, vehicle
)
input_file = "{0} - RNN - 05.xlsx".format(vehicle)
input_path = directory + input_file
df = pd.read_excel(input_path, sheet_name="Sheet1", header=0)
return df
# %%
# Save the predicted fields back to Excel file
def save_ensemble_lookback_data(
df, dependent, criterion, category, test_vehicle, vehicle
):
directory = (
"../../Google Drive/Academia/PhD Thesis/Modeling Outputs/ENSEMBLE_LOOKBACK_PREDICTIONS/"
)
output_file = "{0} - {1} - {2} - {3} - {4}.xlsx".format(
dependent, criterion, category, test_vehicle, vehicle
)
output_path = directory + output_file
with pd.ExcelWriter(output_path, engine="openpyxl", mode="w") as writer:
df.to_excel(writer, header=True, index=None)
print(
"{0} - {1} - {2} - {3} - {4} -> Lookback Ensemble data saved!".format(
dependent, criterion, category, test_vehicle, vehicle
)
)
return None
# %%
# Log ensemble model settings and corresponding scores to a file (one by one)
def log_ensemble_settings_and_score(row, output_file):
directory = "../../Google Drive/Academia/PhD Thesis/Charts, Tables, Forms, Flowcharts, Spreadsheets, Figures/"
output_path = directory + output_file
with open(output_path, "a") as f:
writer = csv.writer(f)
writer.writerow(row)
return None
# %%
# Definition of the custom loss function
def rmse(y_true, y_pred):
return np.sqrt(np.mean(np.square(np.array(y_pred) - np.array(y_true))))
# %%
# Generate time-series input for the desired lookback order
def generate_rnn_input(df, features, dependent, lookback):
dataset = df[features + [dependent]].to_numpy()
dim = len(features)
X, y = [], []
for i in range(lookback, len(dataset)):
X.append(dataset[i - lookback : i + 1, :dim])
y.append(dataset[i, dim])
X, y = np.array(X), np.array(y)
return X, y
# %%
# Load pre-trained rnn model from .h5 file
def load_from_h5(vehicle, dependent, lookback):
directory = "../../Google Drive/Academia/PhD Thesis/Modeling Outputs/RNN/"
input_file = "{0} - RNN - {1} - L{2}.h5".format(vehicle, dependent, lookback)
input_path = directory + input_file
model = load_model(input_path, compile=False)
return model
# %%
# Load ensemble fitted model over separate lookback predictions for each vehicle from .sav file
def load_from_sav(vehicle, dependent, estimator):
directory = (
"../../Google Drive/Academia/PhD Thesis/Modeling Outputs/ENSEMBLE_LOOKBACK_MODELS/"
)
input_file = "{0} - {1} - {2}.sav".format(vehicle, dependent, estimator)
input_path = directory + input_file
with open(input_path, "rb") as reader:
model = pickle.load(reader)
return model
# %%
# Scale the input data
def scale(df, features, dependent):
df_temp = df.copy()
scaler_X = StandardScaler().fit(df_temp[features])
scaler_y = StandardScaler().fit(df_temp[[dependent]])
df_temp[features] = scaler_X.transform(df_temp[features])
df_temp[[dependent]] = scaler_y.transform(df_temp[[dependent]])
return df_temp, scaler_X, scaler_y
# %%
# Generate predictions of component models
# first lookback RNNs and then, their esnemble
# using test vehicle data
def components_predictions(
sensor, dependent, criterion, category, df_category, test_vehicle, settings
):
features = settings["FEATURES"]
batch_size = settings["BATCH_SIZE"]
df_test = load_test_vehicle_data(sensor, test_vehicle)
df_output = pd.DataFrame()
df_output[["DATETIME"] + features + [dependent]] = df_test[
["DATETIME"] + features + [dependent]
][6:]
for _, row in df_category.iterrows():
# vehicle = row["VEHICLE"].value[0]
vehicle = row["VEHICLE"]
df_lookbacks = pd.DataFrame()
df_lookbacks[["DATETIME"] + features + [dependent]] = df_test[
["DATETIME"] + features + [dependent]
]
for lookback in range(1, 7):
df_test_tmp, scaler_X, scaler_y = scale(df_test, features, dependent)
X, y = generate_rnn_input(df_test_tmp, features, dependent, lookback)
trim_size = len(X) % batch_size
trim_length = len(X) - trim_size
X, y = X[:trim_length], y[:trim_length]
rnn_model = load_from_h5(vehicle, dependent, lookback)
y_pred = rnn_model.predict(X, batch_size=batch_size)
y_pred = scaler_y.inverse_transform(y_pred)
y_pred = np.insert(y_pred, 0, np.repeat(np.nan, lookback))
y_pred = np.append(y_pred, np.repeat(np.nan, trim_size))
df_lookbacks["{0}_PRED_L{1}".format(dependent, lookback)] = y_pred
df_lookbacks.dropna(inplace=True)
df_output = df_output[:len(df_lookbacks)]
ensemble_estimator = row["ESTIMATOR"]
ensemble_model = load_from_sav(vehicle, dependent, ensemble_estimator)
lookback_features = [
"{0}_PRED_L{1}".format(dependent, str(i)) for i in range(1, 7)
]
df_output["{0}_PRED_{1}".format(dependent, vehicle)] = df_lookbacks[
"{0}_PRED_{1}".format(dependent, ensemble_estimator)
] = ensemble_model.predict(df_lookbacks[lookback_features])
save_ensemble_lookback_data(
df_lookbacks, dependent, criterion, category, test_vehicle, vehicle
)
score_ensemble = rmse(df_lookbacks[dependent], df_output["{0}_PRED_{1}".format(dependent, vehicle)])
score_components = [
rmse(df_lookbacks[dependent], df_lookbacks[col])
for col in df_lookbacks[lookback_features]
]
row = [
dependent,
criterion,
category,
test_vehicle,
vehicle,
ensemble_estimator,
score_ensemble,
] + score_components
log_ensemble_settings_and_score(
row,
"Paper III - Ensemble Lookback Results - Test Vehicle of Category as Input.csv",
)
df_output.dropna(inplace=True)
return df_output
# %%
# General settings
pd.options.mode.chained_assignment = None
SETTINGS = {
"FEATURES": ["SPD_KH", "ACC_MS2", "ALT_M"],
"BATCH_SIZE": 64,
"CATEGORIZATION_CRITERIA": (
"AGE_RANGE",
"SEGMENT",
"ENGINE_TYPE",
"ENGINE_SIZE_RANGE",
"TRANSMISSION",
"TOTAL_WEIGHT_RANGE",
),
"SENSOR_DEPENDENT": {
"Veepeak": ("FCR_LH",),
"3DATX parSYNC Plus": ("CO2_KGS", "NO_KGS", "NO2_KGS", "PM_KGS"),
},
"ESTIMATORS": (
LinearRegression(normalize=True),
Ridge(alpha=0.1, normalize=True),
Ridge(alpha=1.0, normalize=True),
SVR(C=1.0),
SVR(C=10.0),
DecisionTreeRegressor(splitter="best"),
DecisionTreeRegressor(splitter="random"),
GradientBoostingRegressor(n_estimators=10),
GradientBoostingRegressor(n_estimators=100),
AdaBoostRegressor(n_estimators=10),
AdaBoostRegressor(n_estimators=100),
RandomForestRegressor(n_estimators=10),
RandomForestRegressor(n_estimators=100),
MLPRegressor(hidden_layer_sizes=(100,)),
MLPRegressor(
hidden_layer_sizes=(
100,
100,
)
),
),
}
# %%
# Application of ensemble learning methods
# including Linear Regression, Ridge Regression, SVR, Decision Tree,
# Gradient Boosting, Ada Boosting, Random Forest, and MLP
# Batch execution on all the vehicles
rng = check_random_state(0)
sensor_dependent = SETTINGS["SENSOR_DEPENDENT"]
categorization_criteria = SETTINGS["CATEGORIZATION_CRITERIA"]
ensemble_settings = load_best_ensemble_settings("Best Ensemble Settings")
estimators = SETTINGS["ESTIMATORS"]
for sensor, dependents in sensor_dependent.items():
for dependent in dependents:
dependent_subset = ensemble_settings.loc[
(ensemble_settings["DEPENDENT"] == dependent)
]
for criterion in categorization_criteria:
for category, df_category in dependent_subset.groupby(criterion):
if len(df_category) > 2:
test_row_index = np.random.choice(
df_category.index, 1, replace=False
)
test_row = df_category.loc[test_row_index]
test_vehicle = test_row["VEHICLE"].values[0]
df_category.drop(test_row_index, inplace=True)
print("---------------------")
print(
"Dependent: {0} | Criterion: {1} | Category: {2}".format(
dependent, criterion, category
)
)
print(
"Number of vehicles in category (excluding test): {}".format(
len(df_category)
)
)
print(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss)
print("---------------------")
df_input = components_predictions(
sensor,
dependent,
criterion,
category,
df_category,
test_vehicle,
SETTINGS,
)
ensemble_features = [
"{0}_PRED_{1}".format(dependent, row["VEHICLE"])
for _, row in df_category.iterrows()
]
X, y = df_input[ensemble_features], df_input[dependent]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=rng
)
df_output = pd.DataFrame()
df_output[dependent] = y_test
df_output[ensemble_features] = X_test
for estimator in estimators:
model = estimator.fit(X_train, y_train)
ensemble = model.predict(X_test)
df_output["{0}_PRED_{1}".format(dependent, estimator)] = ensemble
score_ensemble = rmse(y_test, ensemble)
score_components = [rmse(y_test, X_test[col]) for col in X_test]
row = [
dependent,
criterion,
category,
len(df_category),
estimator,
score_ensemble,
] + score_components
log_ensemble_settings_and_score(
row, "Paper III - Ensemble Category Results.csv"
)
print("{0}\nScore: {1}".format(estimator, score_ensemble))
# %%
# %%