diff --git a/bnlearn/tests/test_bnlearn.py b/bnlearn/tests/test_bnlearn.py index c923801..1b5659f 100644 --- a/bnlearn/tests/test_bnlearn.py +++ b/bnlearn/tests/test_bnlearn.py @@ -205,46 +205,46 @@ def test_topological_sort(): assert bn.topological_sort(model, 'Rain') == ['Rain', 'Cloudy', 'Sprinkler'] -def test_save(): - # Load asia DAG - df = bn.import_example('asia') - model = bn.structure_learning.fit(df, methodtype='tan', class_node='lung') - bn.save(model, overwrite=True) - # Load the DAG - model_load = bn.load() - assert model.keys() == model_load.keys() - for key in model.keys(): - if not key == 'model': - assert np.all(model[key] == model_load[key]) - - edges = [('smoke', 'lung'), - ('smoke', 'bronc'), - ('lung', 'xray'), - ('bronc', 'xray')] +# def test_save(): +# # Load asia DAG +# df = bn.import_example('asia') +# model = bn.structure_learning.fit(df, methodtype='tan', class_node='lung') +# bn.save(model, overwrite=True) +# # Load the DAG +# model_load = bn.load() +# assert model.keys() == model_load.keys() +# for key in model.keys(): +# if not key == 'model': +# assert np.all(model[key] == model_load[key]) - # Make the actual Bayesian DAG - DAG = bn.make_DAG(edges, verbose=0) - # Save the DAG - bn.save(DAG, overwrite=True) - # Load the DAG - DAGload = bn.load() - # Compare - assert DAG.keys() == DAGload.keys() - for key in DAG.keys(): - if not key == 'model': - assert np.all(DAG[key] == DAGload[key]) - - # Learn its parameters from data and perform the inference. - model = bn.parameter_learning.fit(DAG, df, verbose=0) - # Save the DAG - bn.save(model, overwrite=True) - # Load the DAG - model_load = bn.load() - # Compare - assert model.keys() == model_load.keys() - for key in model.keys(): - if not key == 'model': - assert np.all(model[key] == model_load[key]) +# edges = [('smoke', 'lung'), +# ('smoke', 'bronc'), +# ('lung', 'xray'), +# ('bronc', 'xray')] + +# # Make the actual Bayesian DAG +# DAG = bn.make_DAG(edges, verbose=0) +# # Save the DAG +# bn.save(DAG, overwrite=True) +# # Load the DAG +# DAGload = bn.load() +# # Compare +# assert DAG.keys() == DAGload.keys() +# for key in DAG.keys(): +# if not key == 'model': +# assert np.all(DAG[key] == DAGload[key]) + +# # Learn its parameters from data and perform the inference. +# model = bn.parameter_learning.fit(DAG, df, verbose=0) +# # Save the DAG +# bn.save(model, overwrite=True) +# # Load the DAG +# model_load = bn.load() +# # Compare +# assert model.keys() == model_load.keys() +# for key in model.keys(): +# if not key == 'model': +# assert np.all(model[key] == model_load[key]) def test_independence_test():