-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
396 lines (323 loc) · 17 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import argparse
import random
import csv
from transformers import AutoTokenizer, AutoModelForMaskedLM
from torch.utils.data import TensorDataset, SequentialSampler, DataLoader
from tqdm import tqdm
import torch
import torch.nn.functional as F
import numpy as np
import pickle
from sklearn.metrics import confusion_matrix, classification_report, f1_score
from preprocessor import MLMPreprocessor
from processors.amazon import AmazonPolarityProcessor, AmazonStarProcessor, AmazonMultiProcessor
from processors.ag_news import AgNewsProcessor, AgNewsMultiProcessor
from processors.xnli import XnliProcessor, XnliMultiProcessor
from processors.pawsx import PawsxProcessor, PawsxMultiProcessor
from processors.yahoo import YahooProcessor
from processors.glue import ColaProcessor, Sst2Processor, MrpcProcessor, QnliProcessor, \
QqpProcessor, RteProcessor, WnliProcessor
from processors.utils import InputExample
import log
logger = log.get_logger('root')
MULTI_TASKS = {
"ag_news_multi", "amazon_reviews_multi", "xnli_multi", "pawsx_multi"
}
PROCESSORS = {
'amazon_polarity': AmazonPolarityProcessor,
'amazon_star': AmazonStarProcessor,
'ag_news': AgNewsProcessor,
'xnli': XnliProcessor,
'pawsx': PawsxProcessor,
'yahoo': YahooProcessor,
'cola': ColaProcessor,
'sst2': Sst2Processor,
'mrpc': MrpcProcessor,
'qnli': QnliProcessor,
'qqp': QqpProcessor,
'rte': RteProcessor,
'wnli': WnliProcessor,
'ag_news_multi': AgNewsMultiProcessor,
'amazon_reviews_multi': AmazonMultiProcessor,
'xnli_multi': XnliMultiProcessor,
'pawsx_multi': PawsxMultiProcessor
}
def compute_metrics(preds, labels):
return {
"acc": (preds == labels).mean(),
"num": len(preds),
"correct": (preds == labels).sum(),
"cm": confusion_matrix(labels, preds),
'report': classification_report(labels, preds),
'f1': f1_score(labels, preds, average='macro')
}
def load_and_cache_dataset(args, preprocessor, processor=None, split=None, lang=None, examples=None):
if processor:
if args.multi_task:
examples = processor.get_examples(args, split, lang)
else:
examples = processor.get_examples(args, split)
features = []
for example in tqdm(examples, desc='Creating input features from input examples'):
input_features = preprocessor.get_input_features(example, labelled=True)
features.append(input_features)
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
all_mlm_labels = torch.tensor([f.mlm_labels for f in features], dtype=torch.long)
all_idx = torch.tensor([int(f.idx.split('-')[-1]) for f in features], dtype=torch.long)
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels, all_mlm_labels,
all_idx)
return dataset
def evaluate(args, model, preprocessor, dataset, params=None):
if args.save_logits:
preds, out_label_ids = get_logits(args, model, preprocessor, dataset)
with open(args.logits_save_path, 'wb') as f:
pickle.dump((preds, out_label_ids), f)
else:
with open(args.logits_save_path, 'rb') as f:
preds, out_label_ids = pickle.load(f)
if params is not None:
if args.calibration_strategy == 'penalty':
assert len(params)==preds.shape[1], "size of params is wrong."
for i in params.keys():
preds[:, i] = preds[:, i] - params[i]
elif args.calibration_strategy == 'transform':
W, b = params
calibrate_preds = None
for logit, label in zip(preds, out_label_ids):
calibrate_logit = np.matmul(W, np.expand_dims(logit, axis=-1)) + b
if calibrate_preds is not None:
calibrate_preds = np.vstack((calibrate_preds, calibrate_logit.squeeze()))
else:
calibrate_preds = calibrate_logit.squeeze()
preds = calibrate_preds
if args.calibration_strategy == 'cbm':
# print(f'params: {preds.mean(axis=0)}')
preds = preds / preds.mean(axis=0)
predictions = np.argmax(preds, axis=1)
return compute_metrics(predictions, out_label_ids)
def get_init_params(args, model, preprocessor):
mask_ex_text = preprocessor.tokenizer.mask_token
pseudo_ex = InputExample(guid='--3', text_a='', text_b='')
prompt_ex_text = ''
for part in preprocessor.pvp.get_parts(pseudo_ex):
for token in part:
if type(token)==tuple:
prompt_ex_text += (token[0]+' ')
else:
prompt_ex_text += token
examples = [InputExample(guid='--1', text_a=mask_ex_text), InputExample(guid='--2', text_a=prompt_ex_text)]
dataset = load_and_cache_dataset(args, preprocessor, examples=examples)
preds, out_label_ids = get_logits(args, model, preprocessor, dataset)
if args.calibration_strategy == 'penalty':
return {i: preds[0][i] for i in range(preds.shape[1])}
if args.transform_context == 'mask':
p_y = preds[0]
elif args.transform_context == 'prompt':
p_y = preds[1]
elif args.transform_context == 'avg':
p_y = np.mean(preds, axis=0)
W = np.linalg.inv(np.identity(p_y.shape[0]) * p_y)
b = np.zeros([p_y.shape[0], 1])
return W, b
def train_params(args, model, preprocessor, dataset, initial_params=None):
if args.calibration_strategy == 'penalty':
return train_penalty(args, model, preprocessor, dataset, initial_params)
elif args.calibration_strategy == 'transform':
return train_transform(args, model, preprocessor, dataset, initial_params)
def train_transform(args, model, preprocessor, dataset, initial_params=None):
preds, out_label_ids = get_logits(args, model, preprocessor, dataset)
# path='logits/agnews_test.pk'
# with open(path, 'rb') as f:
# preds, out_label_ids = pickle.load(f)
if initial_params:
W, b = initial_params
else:
W, b = get_init_params(args, model, preprocessor)
for i in tqdm(range(args.penalty_train_epoch)):
for logit, label in zip(preds, out_label_ids):
transformed_logit = logit.copy()
transformed_logit = np.matmul(W, np.expand_dims(logit, axis=-1)) + b
transformed_logit = np.exp(transformed_logit) / np.sum(np.exp(transformed_logit), axis=0, keepdims=True)
loss = -np.log(transformed_logit[label, 0])
transformed_logit[label, 0] -= 1
dW = np.dot(transformed_logit, np.expand_dims(logit, axis=0))
W -= args.transform_train_lr * dW
b -= args.transform_train_lr * transformed_logit
return W, b
def train_penalty(args, model, preprocessor, dataset, initial_params=None):
# if args.save_train_logits:
# preds, out_label_ids = get_logits(args, model, preprocessor, dataset)
# with open(args.logits_train_save_path, 'wb') as f:
# pickle.dump((preds, out_label_ids), f)
# else:
# with open(args.logits_train_save_path, 'rb') as f:
# preds, out_label_ids = pickle.load(f)
preds, out_label_ids = get_logits(args, model, preprocessor, dataset)
# path='logits/agnews_test.pk'
# with open(path, 'rb') as f:
# preds, out_label_ids = pickle.load(f)
if initial_params:
params = initial_params
else:
num_labels = preds.shape[1]
initial_param = 1 / num_labels
params = {i:initial_param for i in range(num_labels)}
for i in tqdm(range(args.penalty_train_epoch)):
for logit, label in zip(preds, out_label_ids):
penalized_logit = logit.copy()
for i in params.keys():
penalized_logit[i] = logit[i] - params[i]
pred = np.argmax(penalized_logit)
if pred == label:
continue
else:
# params[pred] += (logit[pred]-params[pred]) * args.penalty_train_lr
# params[label] += (logit[label]-params[label]) * args.penalty_train_lr
params[pred] += args.penalty_train_lr
params[label] -= args.penalty_train_lr
return params
def get_logits(args, model, preprocessor, dataset):
args.batch_size = args.per_gpu_batch_size * max(1, args.n_gpu)
eval_sampler = SequentialSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.batch_size)
model.to(args.device)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
preds = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "token_type_ids": batch[2], "labels": batch[3],
"mlm_labels": batch[4], 'idx': batch[5]}
labels = inputs['labels']
indices = inputs['idx']
with torch.no_grad():
logits = mlm_eval_step(inputs, preprocessor, model)
logits = F.softmax(logits, dim=1)
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = labels.detach().cpu().numpy()
all_indices = indices.detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0)
all_indices = np.append(all_indices, indices.detach().cpu().numpy(), axis=0)
return preds, out_label_ids
def mlm_eval_step(batch, preprocessor, model):
inputs = generate_default_inputs(batch)
outputs = model(**inputs)
return preprocessor.pvp.convert_mlm_logits_to_cls_logits(batch['mlm_labels'], outputs[0])
def generate_default_inputs(batch):
inputs = {'input_ids': batch['input_ids'], 'attention_mask': batch['attention_mask'],
'token_type_ids': batch['token_type_ids']}
return inputs
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", default="bert-base-cased", type=str)
parser.add_argument("--max_seq_length", default=128, type=int)
parser.add_argument("--task_name", default="amazon_polarity", type=str)
parser.add_argument("--dataset_name", default="amazon_polarity", type=str)
parser.add_argument("--pattern_id", default=1, type=int)
parser.add_argument("--per_gpu_batch_size", default=8, type=int)
parser.add_argument("--penalize", action="store_true")
# parser.add_argument("--good_verbs", type=str, nargs='+', default=['good', 'perfect', 'fantastic', 'great', 'positive'])
# parser.add_argument("--bad_verbs", type=str, nargs='+', default=['bad', 'awful', 'negative', 'terrible'])
parser.add_argument("--num_train_sample", type=int, default=-1)
parser.add_argument("--num_test_sample", type=int, default=-1)
parser.add_argument("--train_split", type=str, default='train')
parser.add_argument("--test_split", type=str, default='test')
parser.add_argument("--penalty_train_epoch", type=int, default=0)
parser.add_argument("--transform_train_epoch", type=int, default=0)
parser.add_argument("--penalty_train_lr", type=float, default=0.0001)
parser.add_argument("--transform_train_lr", type=float, default=0.0001)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--save_logits", action='store_true', help="only save for the first time")
parser.add_argument("--save_train_logits", action='store_true', help="only save for the first time")
parser.add_argument("--result_dir", default='results/', type=str)
parser.add_argument("--train_lang", default='en', type=str)
parser.add_argument("--langs", default='af,co,en,eo,haw,hmn,ht,ig,jw,km,mi,mn,mt,my,ny,or,sm,sn,st,sw,ta,te,tl,ug,ur,uz,zu', type=str)
parser.add_argument("--transform_context", default='mask', type=str, choices=['mask', 'prompt', 'avg'])
parser.add_argument("--calibration_strategy", default='transform', type=str, choices=['penalty', 'transform', 'cbm'])
args = parser.parse_args()
args.multi_task = True if "multi" in args.task_name else False
args.langs = args.langs.split(',')
args.n_gpu = torch.cuda.device_count()
args.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args.logits_train_save_path = f"logits/train_{args.task_name}_p{args.pattern_id}.pk"
args.result_file = f"{args.result_dir}{args.task_name}.csv"
args.result_f1_file = f"{args.result_dir}{args.task_name}_f1.csv"
random.seed(args.seed)
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
model = AutoModelForMaskedLM.from_pretrained(args.model_name)
processor = PROCESSORS[args.task_name]()
label_list = processor.get_labels()
if args.penalty_train_epoch == 0 and args.num_train_sample != 0:
args.penalty_train_epoch = max(int(5 // (args.penalty_train_lr * args.num_train_sample * len(label_list))), 1)
if args.transform_train_epoch == 0 and args.num_train_sample != 0:
args.transform_train_epoch = max(int(5 // (args.transform_train_lr * args.num_train_sample * len(label_list))), 1)
logger.info('Parameters: {}'.format(args))
# for good_verb in args.good_verbs:
# for bad_verb in args.bad_verbs:
# args.good_verb = good_verb
# args.bad_verb = bad_verb
# verbalizer_file = {0: [bad_verb], 1: [good_verb]}
# preprocessor = MLMPreprocessor(tokenizer, label_list, args.max_seq_length, args.task_name, args.pattern_id,
# verbalizer_file=verbalizer_file)
# loaded_dataset = load_and_cache_dataset(dataset, preprocessor, processor)
# results = evaluate(args, model, preprocessor, loaded_dataset)
# print(f"{args.good_verb}-{args.bad_verb}: {results['acc']}")
preprocessor = MLMPreprocessor(tokenizer, label_list, args.max_seq_length, args.task_name, args.pattern_id,
model_name=args.model_name)
params = None
if args.penalize:
# for cmb calibration, penalize doesn't need to be set
if args.num_train_sample == 0:
params = get_init_params(args, model, preprocessor)
else:
train_dataset = load_and_cache_dataset(args, preprocessor, processor, args.train_split, lang=args.train_lang)
# train_dataset = load_and_cache_dataset(args, preprocessor, processor, args.train_split) if args.save_train_logits else None
params = train_params(args, model, preprocessor, train_dataset, params)
logger.info(f"penalty params: {params}")
# multilingual task
if args.multi_task:
accs = [args.num_train_sample]
f1_scores = [args.num_train_sample]
for lang in args.langs:
args.logits_save_path = f"logits/logits_{args.model_name.split('-')[0]}_{args.calibration_strategy}/{args.task_name}_p{args.pattern_id}_{lang}.pk"
test_dataset = load_and_cache_dataset(args, preprocessor, processor, args.test_split, lang=lang) \
if args.save_logits else None
results = evaluate(args, model, preprocessor, test_dataset, params)
logger.info(f"******lang: {lang}******")
logger.info(f"acc: {results['acc']}")
logger.info(f"confusion matrix:\n{results['cm']}")
logger.info(f"report:\n{results['report']}")
logger.info(f"macro f1 score:\n{results['f1']}")
accs.append(results['acc'])
f1_scores.append(results['f1'])
with open(args.result_file, 'a', newline='') as csvfile:
with open(args.result_f1_file, 'a', newline='') as f1_file:
writer = csv.writer(csvfile)
writer_f1 = csv.writer(f1_file)
writer.writerow(accs)
writer_f1.writerow(f1_scores)
# monolingual task
else:
args.logits_save_path = f"logits/logits_{args.model_name.split('-')[0]}_{args.calibration_strategy}/{args.task_name}_p{args.pattern_id}.pk"
# load test dataset
test_dataset = load_and_cache_dataset(args, preprocessor, processor, args.test_split) if args.save_logits else None
results = evaluate(args, model, preprocessor, test_dataset, params)
logger.info(f"acc: {results['acc']}")
logger.info(f"confusion matrix:\n{results['cm']}")
logger.info(f"report:\n{results['report']}")
logger.info(f"macro f1 score:\n{results['f1']}")
with open(args.result_file, 'a', newline='') as csvfile:
with open(args.result_f1_file, 'a', newline='') as f1_file:
writer = csv.writer(csvfile)
writer_f1 = csv.writer(f1_file)
writer.writerow([args.num_train_sample, results['acc']])
writer_f1.writerow([args.num_train_sample, results['f1']])
if __name__ == "__main__":
main()