jupytext | kernelspec | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
+++
-
Importing, parsing, processing and exporting datasets
- Usage of the Pandas library to import data from CSV files
- Working with Pandas dataframe
- Case Study: Processing a Meteorological Dataset
-
Visualization of datasets
- Showcase of the Seaborn plotting library
-
Least Squares Method & Error Estimations
- Case Study: Free Fall
- Types of Error Estimations
- Fitting through minimization of least squares error
- Coefficient of Determination (
$r^2$ ) - scipy.optimize.minimize, numpy.linalg.lstsq, scipy.linalg.lstsq, scipy.optimize.least_squares,
-
Regression
- Case Study: Drag Force
- Least-squares Method
- Adaptation of the Least-squares to non-linear models
- Case Study: FTIR data of Silica
- np.polyfit, scipy.optimize.curve_fit
-
Interpolation
- Polynomial Interpolation
- Newton Interpolating Polynomials
- Lagrange Interpolating Polynomials
- Inverse Interpolation
- Bonus: Finite Difference Method
- Example: Heat distribution of a rod with boundary conditions
- Polyfit, poly1d, polyval and poly + roots
-
Minimization & Optimization
- Single variable function
- Multi-variate function
- Minimization with constraints
- Example: Heron's Formula for Triangle's Area
- Gradient Descent Algorithm
- Case Study: 2 Springs, 1 Mass, 1 Side
-
Clustering and Classification
- Advantages of Clustering
- k-means Clustering
-
Ordinary Differential Equations
- Finite Difference Method
- Euler's Method
- Runge-Kutta Method (4th order: RK4)
- ODEs with initial conditions
- ODEs with boundary conditions