-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaneuron.py
136 lines (97 loc) · 3.37 KB
/
aneuron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
class Layer:
def __init__(self, n_nums, bias=1.0):
self.neurons = [Neuron(bias) for _ in range(n_nums)] # lista di neroni, in base all'input che gli viene dato
self.prev_layer = None
self.next_layer = None
self.weights_to_next = None
self.name = None
def set_name(self, name):
self.name = name
return self
def connect_to(self, next_layer, initial_weights=None):
self.next_layer = next_layer
next_layer.prev_layer = self
n_current = len(self.neurons)
n_next = len(next_layer.neurons)
if initial_weights is None:
self.weights_to_next = np.random.randn(n_current, n_next) * np.sqrt(2.0 / (n_current + n_next))
else:
self.weights_to_next = initial_weights
return self
def forward(self):
if self.next_layer is None:
return
current_outputs = np.array([neuron.get_output() for neuron in self.neurons])
next_inputs = np.dot(current_outputs, self.weights_to_next)
for i, neuron in enumerate(self.next_layer.neurons):
neuron.output = neuron.compute_output(next_inputs[i])
self.next_layer.forward()
def set_inputs(self, input_values):
if len(input_values) != len(self.neurons):
raise ValueError(f"Expected {len(self.neurons)} input values, got {len(input_values)}")
for neuron, value in zip(self.neurons, input_values):
neuron.set_output(value)
def get_outputs(self):
return [neuron.get_output() for neuron in self.neurons]
def print_state(self):
"""Stampa lo stato corrente del layer (per debug)"""
layer_name = self.name if self.name else "Unnamed Layer"
print(f"\n--- {layer_name} ---")
print(f"Number of neurons: {len(self.neurons)}")
print("Neuron outputs:")
for i, neuron in enumerate(self.neurons):
print(f" Neuron {i}: {neuron.get_output():.4f}")
if self.weights_to_next is not None:
print(f"Weights to next layer (shape: {self.weights_to_next.shape}):")
print(self.weights_to_next)
class Neuron:
def __init__(self, bias):
self.bias = bias
self.output = 0
def get_bias(self):
return self.bias
def get_output(self):
return self.output
def set_output(self, value):
self.output = value
def activate(self, x):
return max(0, x)
def compute_output(self, net_input):
return self.activate(net_input + self.bias)
# Creare una rete con 3 layer
input_layer = Layer(3).set_name("Input Layer")
hidden_layer = Layer(2).set_name("Hidden Layer")
output_layer = Layer(1).set_name("Output Layer")
# Connettere i layer
input_layer.connect_to(hidden_layer)
hidden_layer.connect_to(output_layer)
# Impostare i valori di input
input_layer.set_inputs([0.5, 0.2, 0.1])
# Stampare lo stato iniziale
input_layer.print_state()
hidden_layer.print_state()
output_layer.print_state()
# Propagare in avanti
input_layer.forward()
# Stampare lo stato finale
print("\n=== After Forward Propagation ===")
input_layer.print_state()
hidden_layer.print_state()
output_layer.print_state()
# Ottenere l'output finale
final_output = output_layer.get_outputs()
print("\nFinal output:", final_output)
# old implementation
""" def cni(j, w, b): # cni stands for compute_neuron_input
j_with_bias = [1] + j.copy()
w_with_bias = [b] + w.copy()
jblen = len(j_with_bias)
wblen = len(w_with_bias)
acc = 0
if (jblen != wblen):
return "Vector j and w should have same length"
for i in range(jblen):
acc = acc + (j_with_bias[i] * w_with_bias[i])
return max(0, acc)
print(cni(j, w, b)) """