-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmove_ARg.py
36 lines (25 loc) · 1013 Bytes
/
move_ARg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# -*- coding: utf-8 -*-
"""
Created on Sat Nov 28 14:52:59 2020
@author: emadg
"""
import numpy as np
from Log_Likelihood import Log_Likelihood
from cauchy_dist import cauchy_dist
def move_ARg(XnZn,AR_bounds,LogLc,xc,zc,rhoc,alpha_c,ARgc,ARTc,T,Kernel_Grv,Kernel_Mag,dg_obs,dT_obs):
NAR = int(np.size(ARgc))
# AR_min = globals_par[4,0]
# AR_max = globals_par[4,1]
for iar in np.arange(NAR):
AR_min = AR_bounds[iar+1, 0]
AR_max = AR_bounds[iar+1, 1]
std_cauchy = abs(AR_max-AR_min)/40
ARgp = ARgc.copy()
ARgp[iar] = cauchy_dist(ARgc[iar],std_cauchy,AR_min,AR_max,ARgc[iar])
if np.isclose(ARgc[iar] , ARgp[iar])==1: continue
LogLp = Log_Likelihood(Kernel_Grv,Kernel_Mag,dg_obs,dT_obs,xc,zc,rhoc,alpha_c,ARgp,ARTc,XnZn)[0]
MHP = np.exp((LogLp - LogLc)/T)
if np.random.rand()<=MHP:
LogLc = LogLp
ARgc = ARgp.copy()
return [LogLc,ARgc]