-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodules.py
57 lines (50 loc) · 1.98 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def printProgressBar(iteration, total, prefix='', suffix='', decimals=2, length=80, fill='█', printEnd="\r"):
"""
Call in a loop to create terminal progress bar
@params:
iteration - Required : current iteration (Int)
total - Required : total iterations (Int)
prefix - Optional : prefix string (Str)
suffix - Optional : suffix string (Str)
decimals - Optional : positive number of decimals in percent complete (Int)
length - Optional : character length of bar (Int)
fill - Optional : bar fill character (Str)
printEnd - Optional : end character (e.g. "\r", "\r\n") (Str)
"""
percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total)))
filledLength = int(length * iteration // total)
bar = fill * filledLength + '-' * (length - filledLength)
print(f'\r{prefix} |{bar}| {percent}% {suffix}', end=printEnd)
# Print New Line on Complete
if iteration == total:
print()
class AverageMeter(object):
"""
A handy class for averages
"""
def __init__(self):
self.number = 0.
self.sum = 0.
self.avg = 0.
def update(self, value):
self.number += 1.
self.sum += value
self.avg = self.sum / self.number
def reset(self):
self.number, self.sum, self.avg = 0., 0., 0.
def precision_recall(dt, gt, t=0.5, is_binary=True):
"""
:param dt: 1D tensor of detections in {0,1} (if is_binary)
:param gt: 1D tensor of ground truth values in {0,1}
:param t: if dt isn't binary, threshold for outputting 1
:param is_binary: indicates whether dt is in {0,1} or [0,1]
:return: precision, recall at confidence threshold t
"""
if not is_binary:
dt[dt < t] = 0
dt[dt >= t] = 1
tp = sum(dt * gt)
# tn = sum((1 - dt) * (1 - gt))
fp = sum((1 - gt) * dt)
fn = sum(gt * (1 - dt))
return (tp / (tp + fp)).item(), (tp / (tp + fn)).item()